matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTangente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Tangente
Tangente < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Do 24.05.2007
Autor: Carolin1102

Aufgabe
Zeigen Sie, dass der Graph der Funktion g(x)= -4x + 14 Tangente an den Graphen der Funktion f(x)= [mm] \bruch{2}{(x-2)^2} [/mm]
ist und berechnen Sie die Koordinaten des Berührungspunktes.

f`(x)=  [mm] \bruch{2}{(x-2)^3} [/mm] = -4
[mm] -2x^3+12x^2-24x+16=0 [/mm]
x=2
y=6
Aber: P (2;6) ist doch nicht der Berührungspunkt?!
Und wie soll ich beweisen, dass g eine Tangente an f ist?

Ich habe die Frage in keinem anderen Internetforum gestellt.


        
Bezug
Tangente: Ableitung falsch
Status: (Antwort) fertig Status 
Datum: 14:05 Do 24.05.2007
Autor: Roadrunner

Hallo Carolin!


Du hast Dich bei der Ableitung verrechnet. Diese lautet:

$f'(x) \ = \ [mm] 2*(-2)*(x-2)^{-3} [/mm] \ = \ [mm] \bruch{-4}{(x-2)^3}$ [/mm]


Damit diese Gerade eine Tangente ist, müssen an der Berührstelle sowohl Steigung als auch Funktionswert übereinstimmen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Tangente: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:29 Do 24.05.2007
Autor: Carolin1102

Also  mit der neuen Ableitung:
[mm] 0,5x^3 [/mm] + [mm] 3x^2 [/mm] - 6x + 4 = 0
x=2 (wie bei meiner ersten Ableitung)

Und nun? Wie erhalte ich den Berührungspunkt?

Bezug
                        
Bezug
Tangente: Rechenfehler
Status: (Antwort) fertig Status 
Datum: 14:38 Do 24.05.2007
Autor: Roadrunner

Hallo Carolin!


Wie kommst Du auf diese Gleichung mit [mm] $\red{0.5}*x^3+...$ [/mm] ? Ich erhalte für den x-Wert des Berührpunktes $x \ = \ 3$ . Und diesen Wert dann in die Funktionsvorschrift einsetzen.


Hier mal meine ersten Umformungsschritte:

[mm] $\bruch{-4}{(x-2)^3} [/mm] \ = \ -4$     [mm] $\left| \ : \ (-4)$ $\bruch{1}{(x-2)^3} \ = \ 1$ $\left| \ * \ (x-2)^3$ $1 \ = \ (x-2)^3$ $\left| \ \wurzel[3]{ \ ... \ }$ usw. Gruß vom Roadrunner [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]