matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisTangente / Ableitung X0
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Tangente / Ableitung X0
Tangente / Ableitung X0 < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente / Ableitung X0: Tangente, Ableitung an X0
Status: (Frage) beantwortet Status 
Datum: 16:54 So 27.03.2005
Autor: Heavy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo! Erstmal danke für die Hilfe.Ich Sitze hier und komme an einer an sich sicherlich simplen Aufgabe nicht weiter, da ich allerdings noch einiges Lernen muss hoffe ich mit eurer Hilfe verstehen zu können wie man folgende Aufgabe löst

Aufgabe:

Gegeben ist die Funktion f mit f(x) = x2
a) Bestimmen sie f´(-2) und zeichnen sie den Graphen von f sowie die gerade mit der Steigung f´(-2) durch den Punkt P0 (-2 |4).

b) Prüfen sie rechnerich, ob P0 der einzige Punkt ist, den die Gerade und der Grap von f gemeinsam haben.

Also an sich weiß ich irgendwo schon wies geht aber mir fehlt der Anfang bin durch all die Formeln durcheinander geraten.

Also den Graphen von F zu zeichnen ist ja kein problem das müsste doch eine Parabel im Punkt P0 sein oder ?

Wie zeichne bzw. wie berechne ich denn jetzt die Gerade die ich ja duch P0 zusätzlich zeichnen soll ?

Ich weiß ja das f`(-2) die Steigung der Geraden ist, mit der diese durch P0 geht oder ?

Muss ich nun irgendwas mit m(x) = f(x) - f (x0)
                                                       --------------
                                                         x - x0

berechnen oder einfach nur die -2 in die Funktion einsetzen ( = 4 )
was mach ich dann weiter wie muss ich vorgehen ich finde keinen Anfang / blicke nciht so recht dahinter.

Hoffe ihr könnt mir schnell helfen. Danke sehr


        
Bezug
Tangente / Ableitung X0: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:36 So 27.03.2005
Autor: MathePower

Hallo,

die Gleichung der Tangente ermittelst Du durch die sogenannte 2-Punkte-Form:

[mm]\frac{{y\; - \;y_0 }} {{x\; - \;x_0 }}\; = \;y'\left( {x_0 } \right)[/mm]

Hieraus ergibt sich:

[mm]y\; = \;y'\left( {x_0 } \right)\;\left( {x\; - \;x_0 } \right)\; + \;y_0 [/mm]

Um zu zeigen, dass diese Gerade mit der Parabel nur den einen Punkt gemeinsam hat, ist die Parabel mit der Geraden zu schneiden.

[mm]x^{2} \; = \;m\;x\; + \;b[/mm]

Diese Gleichung nach x auflösen und die Lösungen betrachten.

Gruß
MathePower






Bezug
        
Bezug
Tangente / Ableitung X0: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 So 27.03.2005
Autor: Zwerglein

Hi, Heavy,

vermutlich sollst Du die Tangentensteigung mit Hilfe des Differenzenquotienten ermitteln:

[mm] \bruch{f(x)-f(xo)}{x-xo} [/mm]         (zunächst mit x [mm] \not= [/mm] xo)

= [mm] \bruch{x^{2} - 4}{x - (-2)} [/mm]

= [mm] \bruch{x^{2} - 4}{x + 2} [/mm]

= [mm] \bruch{(x+2)(x-2)}{x + 2} [/mm]

Kürzen durch (x+2) ergibt:

= x - 2.

Wenn nun x [mm] \to [/mm] -2 geht,
geht (x - 2) gegen -4
und dies ist die gesuchte Steigung im Punkt P.

Nun zur Tangente selbst: y = mx + t  mit m = -4
Also: y = -4x + t.
Und da P auf dieser Geraden liegt, muss, wenn man seine Koordinaten einsetzt, eine wahre Aussage rauskommen:

4 = -4*(-2) + t  <=> t = -4.
Ergebnis für die Tangente: y = -4x - 4.

b) Gleichsetzen von Funktionsterm und Tangente:
[mm] x^{2} [/mm] = -4x - 4  oder: [mm] x^{2} [/mm] + 4x + 4 = 0
Diese Gleichung hat nur die einzige Lösung x = -2.  (q.e.d.)

Jetzt klar?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]