matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenTangenten durch Punkt P finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Ganzrationale Funktionen" - Tangenten durch Punkt P finden
Tangenten durch Punkt P finden < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten durch Punkt P finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Sa 06.12.2008
Autor: marymary

Aufgabe
Die Funktion f mit [mm] f(x)=\bruch{1}{8}x^{3}-\bruch{3}{2}x^{2}-\bruch{9}{2}x [/mm]
hat das Schaubild [mm] K_{f}. [/mm]
Legen Sie vom Punkt [mm] P(\bruch{4}{3}|6) [/mm] Tangenten an die Kurve [mm] K_{f}. [/mm]
Bestimmen Sie die Gleichungen der Tangenten und die Koordinaten der Beührpunkte.

Wenn man sich den Graphen im GTR anschaut, dann sieht man, dass er etwa wie [mm] x^{3} [/mm] aussieht, etwas nach rechts verschoben. Man sieht und kann dann nachrechnen, dass es in (4/2) einen Wendepunkt gibt.

Wenn man sich nun Geraden durch P vorstellt, können die meiner Meinung nach [mm] K_{f} [/mm]  nur einmal irgendwo bei minus 2-4 und ein zweites mal direkt im Wendepunkt berühren.

Ich habe die Tangentengleichung zu f in (4/2) berechnet, nämlich [mm] w(x)=-\bruch{3}{2}x [/mm] +8. Wenn man [mm] x=\bruch{4}{3} [/mm] einsetzt, sieht man, dass P auf w liegt und hat damit die Aufgabe halb gelöst.

Die andere Hälfte schaffe ich nicht.

Ich hatte versucht, allgemein eine Tangentengleichung an einem beliebeigen Punkt [mm] (x_{0},y_{0}) [/mm] zu bestimmen, aber das schaffe ich nicht, da muss ich irgendwann eine Gleichung vierten Grades lösen und das scheint unlösbar...
...und eine andere Idee habe ich nicht...

Ich freu mich über Hilfe jeder Art - ein Freund von mir muss die Aufgaben für einen Nachhilfeschüler lösen und beide schaffen es nicht, inklusive mir :O)

Marie




        
Bezug
Tangenten durch Punkt P finden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Sa 06.12.2008
Autor: Lati

Hi Marie,

das würde ich über die Tangentengleichung lösen und zwar:

[mm] y=f'(x_{0})*(x-x_{0}) [/mm] + [mm] f(x_{0}) [/mm]
in unserem Fall also:
[mm] 6=f'(x_{0})*(4/3-x_{0}) [/mm] + [mm] f(x_{0}) [/mm]

Jetzt musst du diese Gleichung halt nach [mm] x_{0} [/mm] auflösen.

Ich denke. dass dies machbar sein müsste.

Wenn du noch Fragen hast dann meld dich...

Grüße L.

Bezug
                
Bezug
Tangenten durch Punkt P finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:53 Mo 08.12.2008
Autor: marymary

dankeschön - jetzt hat's geklappt!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]