matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisTangenten und Normale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Tangenten und Normale
Tangenten und Normale < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten und Normale: Problem mit der Berechnung
Status: (Frage) beantwortet Status 
Datum: 06:57 Do 16.12.2004
Autor: BingoBongo

Hallo,
da ich hiermit mein erstes Posting mache, hier auch gleich der gewünschte Hinweis: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe ein Problem mit der Berechnung einer Tangente, welche senkrecht zu einer anderen Geraden verläuft und sinnvollerweise natürlich eine bestimmte Funktion berühren soll.
Die Aufgabe war Teil eines Tests in Mathe vor 3 Wochen, bei der ich allerdings total versagt habe, und deshalb jetzt hier die Frage nach nem Lösungsansatz.
Also gegeben war die Funktion: f(x) = -2x²+9x-12
und die Gerade g(x) = -5x+12
Die Aufgabenstellung sah folgendermaßen aus: Berechnen Sie die Gleichung der Tangente t an f, die senkrecht zu g verläuft.[...]

Ich habe mir also als Lösungsansatz gedacht, erstmal die Senkrechte der Funktion g zu ermitteln und danach dann diese Gerade so zu verschieben, dass es ne Tangente an f wird.
Ich habe also von dieser Senkrechten erstmal den Anstieg ermittelt; der liegt bei 1/5  nur leider hört es dann auch schon auf mit dem Verständnis. Ich habe keine Ahnung, wie ich zu den anderen erforderlichen Größen kommen soll, um diese Senkrechte berechnen zu können.
Kann mir da bitte jemand einen Tipp geben, wie ich da vorgehen muß?

Bingo


        
Bezug
Tangenten und Normale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Do 16.12.2004
Autor: FriedrichLaher

Hallo Bingo

Den Anstieg hast Du richtig ermittelt
und
dieser soll ja auch der Anstieg der
gesuchten Tangente sein

Bestimme die Ableitung Deiner f(x), also f'(x)
und
Löse dann die Gleichung f'(b) = 1/5
nach b auf.

b ist dann das x des Berührungspunktes
DER Tangente an f(x) die die Steigung 1/5 hat.
Die
Gleichung der Tangente selbst,
in
"Punkt-Richtungsform" ist dann

t(x) = f(b) + (x-b)*(1/5)

Bezug
        
Bezug
Tangenten und Normale: erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Do 16.12.2004
Autor: BingoBongo

Vielen Dank für diesen Ansatz, damit habe ich nen Denkanstoß bekommen.
Ich habs zwar etwas anders angegangen, aber das Ergebnis dürfte da das gleiche sein.
Mit dem b in der Funktion f für x den dazugehörigen y-Wert berechnen und am Schluß noch das m der Tangentenfunktion, so das die Lösung wohl lautet t(x) = 1/5x - 2,32

Bingo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]