Tangentenberechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:23 So 15.10.2006 | Autor: | Lex |
Aufgabe | Ermittle die Gleichung dergenigen Tangente an das Schaubild von f, welche zur gegebenen Geraden g parallel ist. Gib die Koordinaten des Berührpunktes B an.
[mm] f(x)=\wurzel{x}
[/mm]
g: y=1/3*x-1 |
Könnt ihr mir sagen wie man die löst? Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Lex,
> Ermittle die Gleichung dergenigen Tangente an das Schaubild
> von f, welche zur gegebenen Geraden g parallel ist. Gib die
> Koordinaten des Berührpunktes B an.
> [mm]f(x)=\wurzel{x}[/mm]
> g: y=1/3*x-1
Aus der Parallelität der Tangente [mm]t[/mm] zu [mm]g[/mm] weiß man, daß [mm]t[/mm] dieselbe Steigung hat wie [mm]g[/mm]. Da [mm]f'\left(x_s\right)[/mm] graphisch die Steigung einer Tangente im Punkt [mm]x_s[/mm] an [mm]f[/mm] angibt, muß hier [mm]f'\left(x_s\right) = \tfrac{1}{2\sqrt {x_s}} = \tfrac{1}{3} \Rightarrow x_s = \tfrac{9}{4}[/mm] gelten.
Damit ist wegen [mm]t\left(\tfrac{9}{4}\right) = \tfrac{1}{3}\cdot{\tfrac{9}{4}}+b = \sqrt{\tfrac{9}{4}}[/mm] die Tangente [mm]t[/mm] eindeutig bestimmt.
Viele Grüße
Karl
|
|
|
|