matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeutsche Mathe-OlympiadeTangententrapez (411145)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Deutsche Mathe-Olympiade" - Tangententrapez (411145)
Tangententrapez (411145) < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangententrapez (411145): Frage mit Lösung
Status: (Frage) überfällig Status 
Datum: 14:20 So 06.07.2008
Autor: tuxor

Aufgabe
Ein Trapez ABCD mit rechten Winkeln bei A und D besitze einen Inkreis mit Mittelpunkt M und Radius r. Die Längen der parallelen Seiten AB und CD seien a und c, der Schnittpunkt der Diagonalen AC und BD sei S.
1. Man weise nach, dass das Lot von S auf eine der Trapezseiten die Länge r hat.
2. Man bestimme den Abstand zwischen M und S in Abhängigkeit von r und a.

Meine Lösung bitte mal kontrollieren; vor allem 2.!
[Dateianhang nicht öffentlich]

1.)
[mm]\sphericalangle MHA + \sphericalangle AEM = 180^\circ[/mm]
AHME ist also ein Sehnenviereck, darum:
[mm]\sphericalangle HAE + \sphericalangle EMH = 180^\circ[/mm]
Laut Vorgabe ist [mm]\sphericalangle HAE = 90^\circ[/mm], sodass also [mm]\sphericalangle EMH = 90^\circ[/mm].
So ähnlich kommt man dann auch auf [mm]\sphericalangle FME = 90^\circ[/mm].

MGCF ist auch offensichtlich ein Sehnenviereck. Und wegen MG = MF ist auch FC = CG. Analog ist HB = BG. Aus Symmetriegründen sind MC und MB jeweils Winkelhalbierenden der Winkel [mm]\sphericalangle BCD[/mm] und [mm]\sphericalangle CBA[/mm].
Nach Eigenschaft von Trapezen ist [mm]\sphericalangle DCB + \sphericalangle CBA = 180^\circ[/mm].
Nach der Winkelsumme im Dreieck MBC ist [mm]\bruch{1}{2} * (\sphericalangle DCB + \sphericalangle CBA) + \sphericalangle BMC = 180^\circ \Rightarrow \sphericalangle BMC = 90^\circ[/mm]

Nach dem Höhensatz in MBC ist [mm]BG * GC = MG^2 \Rightarrow HB * FC = r^2[/mm]. Daraus lässt sich folgende Formel entwickeln: [mm]\bruch{r+FC}{r+HB} = \bruch{FC}{r}[/mm]
Nach dem Strahlensatz mit den beiden Diagonalen als Strahlen und den parallelen Trapezseiten als Parallele kommen wir auf [mm]\bruch{r+FC}{r+HB} = \bruch{SC}{AS}[/mm]. Eine andere Strahlensatzfigur mit den Strahlen FH und AC ergibt [mm]\bruch{FC}{r} = \bruch{S'C}{AS'}[/mm]. (Wobei S' der Schnittpunkt von FH mit AC ist.)

Es gilt nun [mm]\bruch{SC}{AS} = \bruch{S'C}{AS'}[/mm], was bedeutet, dass FH die Diagonale AC im selben Verhältnis schneidet wie DB und deswegen sind S' und S identischen und S liegt immer auf FH. FH ist parallel zu AD mit dem Abstand r und somit ist das Lot von S auf AD immer r. Quod erat demonstrandum :)

2.)
Strahlensatz ergibt: [mm]\bruch{a - r}{r} = \bruch{SH}{2r-SH}[/mm] Umgeformt ergibt das [mm]SH = \bruch{2ar - 2r^2}{a}[/mm]
Außerdem ist natürlich [mm]MS = \left| SH - r \right|[/mm] und somit [mm]MS = \left| \bruch{2ar - 2r^2}{a} - r \right| = \left| \bruch{r(a - 2r)}{a} \right|[/mm]

PS: Ich würde außerdem gerne wissen, ob es erlaubt ist, solche selbst erstellten Lösungen der vergangenen Mathematikolympiadeaufgaben zu veröffentlichen. Das wird ja hier zum Beispiel ohnehin gemacht: http://www.olympiade-mathematik.de/

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Tangententrapez (411145): Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Sa 12.07.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]