matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenTangential und Normalraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangential und Normalraum
Tangential und Normalraum < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangential und Normalraum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:59 Mo 01.06.2009
Autor: XPatrickX

Aufgabe
Gebe Tangential- und Normalraum in einem beliebigen Punkt (x,y,z) [mm] \in E/H_c [/mm] an:

$a.) [mm] \; \; E:=\{ (x,y,z)\in\IR^3 | \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\}$ [/mm]

$b.) [mm] \; \; H_c:=\{ (x,y,z)\in\IR^3 | x^2+y^2-c^2=z^2\} [/mm] , c>0$

Hallo,

ich wollte mal fragen, ob ich die Aufgabe soweit richtig gelöst habe.

zua.) Es gilt [mm] $E=f^{-1}(0)$ [/mm] für [mm] $f(x,y,z)=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}-1$ [/mm]

Dann ist [mm] $\nabla [/mm] f [mm] =\left( \frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2} \right)$ [/mm]

Nun gilt [mm] $T_{z_0}S [/mm] =  [mm] \{ v\in\IR^{n+l} | Df(z_0)*v=0}=ker Df(z_0)$ [/mm]

Also hier alle [mm] (v_1,v_2,v_3)\in\IR^3 [/mm] sodass [mm] \frac{v_1x}{a^2}+\frac{v_2y}{v^2}+\frac{v_3z}{c^2}=0 [/mm]

Was ja offensichtlich eine 2-dim Hyperebene darstellt. Würde also passen. Und der Normalraum ist ja einfach der Span der Gradienten, also hier:

$span [mm] \{ \left( \frac{2x}{a^2}, \frac{2y}{b^2}, \frac{2z}{c^2} \right) \} [/mm] = t* [mm] \left( \frac{x}{a^2}, \frac{y}{b^2}, \frac{z}{c^2} \right)$ [/mm]   mit [mm] t\in\IR [/mm]



Teil b dann analog:

[mm] f(x,y,z)=x^2+y^2-z^2-c^2 [/mm]

[mm] \nabla [/mm] f= (2x, 2y, -2z)

[mm] T_{x,y,z}S= \{ v\in\IR^3 | 2v_1x+2v_2y-2v_3z=0 \} [/mm]

[mm] T^{\bot}_{x,y,z}S= [/mm] span(2x,2y,-2z) = [mm] t*\vektor{x \\ y \\-z}, \; t\in\IR [/mm]


Ist es richtig, dass Tangential und Normalraum unabhängig von c sind? Das wundert mich etwas...


Danke fürs Drüberschauen,
viele Grüße
Patrick

        
Bezug
Tangential und Normalraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Mo 01.06.2009
Autor: generation...x

Nur zu deiner letzten Frage (den Rest habe ich mir jetzt nicht gründlich genug überlegt...): Sind sie das wirklich? Du musst bedenken, dass ja nur bestimmte Tripel (x, y, z) in Frage kommen: Wenn du x, y kennst, kannst du z - wenn auch nicht eindeutig - bestimmen, aber c geht dabei ein.

Bezug
                
Bezug
Tangential und Normalraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:45 Mo 01.06.2009
Autor: XPatrickX

Ahja stimmt, ich kann ja nur bestimmt x,y,z nehmen und diese hängen ja dann von c ab. Danke:-)

Bezug
        
Bezug
Tangential und Normalraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 04.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]