matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenTangentialebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangentialebene
Tangentialebene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Fr 29.05.2009
Autor: nitramGuk

Aufgabe
[mm]f(x,y)=cos(\wurzel{\pi ^2 -x^2 -y^2})[/mm]; [mm]x^2+y^2\le \pi^2[/mm]; [mm]P_0=( \bruch{\pi}{3}, \bruch{2\pi}{3}, z_0)[/mm]
a) Bestimmen Sie die Gleichung der Tangentialebene an f(x,y) im Punkt [mm]P_0[/mm]
b) Berechnen Sie unter Verwendung der Gleichung für die Tangentialebene einen Näherungswert für z, den man erhalten würde, wenn man [mm]x_0[/mm] um 10% erhöht und [mm]y_0[/mm] gleichzeitig um 10% verringert
c) Welchen Anstieg hat die Tangente an f im Punkt [mm]P_0[/mm] in Richtung des Vektors [mm]\vec a = \begin{pmatrix} \pi \\ \bruch{4\pi}{3} \end{pmatrix}[/mm]

Hallo, hab leider nur zu a) 'nen Ansatz:

a)

Tangentialebene:

[mm]z - z_0 = f_x (x_0,y_0) * (x-x_0) + f_y(x_0,y_0) * (y-y_0)[/mm]

[mm]z_0 = f(x_0,y_0) = cos(\wurzel{\pi ^2 - \bruch{\pi ^2}{9} - \bruch{4\pi ^2}{9} }) = cos(\bruch{2}{3} \pi) = -0,5 [/mm]

[mm] f_x(x,y) = \bruch{ x*sin(\wurzel{\pi ^2-x^2-y^2}) }{ \wurzel{\pi ^2-x^2-y^2} }[/mm]
[mm] f_y(x,y) = \bruch{ y*sin(\wurzel{\pi ^2-x^2-y^2}) }{ \wurzel{\pi ^2-x^2-y^2} }[/mm]

Dann alles eingesetzt in die obere Formel:

[mm]z = \bruch{\wurzel{3}}{4}x + \bruch{\wurzel{3}}{2}y - \bruch{5\wurzel{3}\pi}{12} - 0,5[/mm]

Soweit sollte das stimmen.

b)

Also mit Hilfe des totalen Differentials wüsste ich, wie man das berechnen kann, aber mit der in a) ausgerechneten Formel?
Das tot. Diff. wird ja auch über die beiden partiellen Ableitungen berechnet, evtl heißt das nur, dass man die beiden verwenden soll aus a) ? [verwirrt]
Wenn man es doch mit der Tangentialebene berechnen kann, wäre nett, wenn Ihr mir das erklären könntet, wie.

c)

Also Anstieg der Tangente über [mm]f_x[/mm] bzw. [mm]f_y[/mm] geht ja, aber das ist ja nur in Richtung der Koordinatenachsen
(müsste ja den Vektoren: [mm]\begin{pmatrix}1\\ 0 \end{pmatrix}[/mm] bzw. [mm]\begin{pmatrix}0\\ 1 \end{pmatrix}[/mm] entsprechen ?)

Ich vermute mal, dass kann man sich dann aus den beiden zusammensetzen/herleiten, leider hab ich keine Ahnung, wie genau das funktioniert (und im Script nichts zu dem speziellen Fall gefunden). [keineahnung]

Grüße & Danke nitramGuk

Frage in keinem anderem Forum gestellt.

        
Bezug
Tangentialebene: Aufgabe a) b)
Status: (Antwort) fertig Status 
Datum: 16:43 Fr 29.05.2009
Autor: MathePower

Hallo nitramGuk,


> [mm]f(x,y)=cos(\wurzel{\pi ^2 -x^2 -y^2})[/mm]; [mm]x^2+y^2\le \pi^2[/mm];
> [mm]P_0=( \bruch{\pi}{3}, \bruch{2\pi}{3}, z_0)[/mm]
>  a) Bestimmen
> Sie die Gleichung der Tangentialebene an f(x,y) im Punkt
> [mm]P_0[/mm]
>  b) Berechnen Sie unter Verwendung der Gleichung für die
> Tangentialebene einen Näherungswert für z, den man erhalten
> würde, wenn man [mm]x_0[/mm] um 10% erhöht und [mm]y_0[/mm] gleichzeitig um
> 10% verringert
>  c) Welchen Anstieg hat die Tangente an f im Punkt [mm]P_0[/mm] in
> Richtung des Vektors [mm]\vec a = \begin{pmatrix} \pi \\ \bruch{4\pi}{3} \end{pmatrix}[/mm]
>  
> Hallo, hab leider nur zu a) 'nen Ansatz:
>  
> a)
>  
> Tangentialebene:
>  
> [mm]z - z_0 = f_x (x_0,y_0) * (x-x_0) + f_y(x_0,y_0) * (y-y_0)[/mm]
>  
> [mm]z_0 = f(x_0,y_0) = cos(\wurzel{\pi ^2 - \bruch{\pi ^2}{9} - \bruch{4\pi ^2}{9} }) = cos(\bruch{2}{3} \pi) = -0,5[/mm]
>  
> [mm]f_x(x,y) = \bruch{ x*sin(\wurzel{\pi ^2-x^2-y^2}) }{ \wurzel{\pi ^2-x^2-y^2} }[/mm]
>  
> [mm]f_y(x,y) = \bruch{ y*sin(\wurzel{\pi ^2-x^2-y^2}) }{ \wurzel{\pi ^2-x^2-y^2} }[/mm]
>  
> Dann alles eingesetzt in die obere Formel:
>  
> [mm]z = \bruch{\wurzel{3}}{4}x + \bruch{\wurzel{3}}{2}y - \bruch{5\wurzel{3}\pi}{12} - 0,5[/mm]
>  
> Soweit sollte das stimmen.


Hier stimmt alles. [ok]


>  
> b)
>  
> Also mit Hilfe des totalen Differentials wüsste ich, wie
> man das berechnen kann, aber mit der in a) ausgerechneten
> Formel?
>  Das tot. Diff. wird ja auch über die beiden partiellen
> Ableitungen berechnet, evtl heißt das nur, dass man die
> beiden verwenden soll aus a) ? [verwirrt]
>  Wenn man es doch mit der Tangentialebene berechnen kann,
> wäre nett, wenn Ihr mir das erklären könntet, wie.


Nun, setze für x den um 10 % erhöhten Wert gegenüber [mm]x_{0}[/mm]
und für y den um 10 % erniedrigten Wert gegenüber [mm]y_{0}[/mm] in die
Gleichung der Tangentialebene ein.


>  
> c)
>
> Also Anstieg der Tangente über [mm]f_x[/mm] bzw. [mm]f_y[/mm] geht ja, aber
> das ist ja nur in Richtung der Koordinatenachsen
> (müsste ja den Vektoren: [mm]\begin{pmatrix}1\\ 0 \end{pmatrix}[/mm]
> bzw. [mm]\begin{pmatrix}0\\ 1 \end{pmatrix}[/mm] entsprechen ?)
>  
> Ich vermute mal, dass kann man sich dann aus den beiden
> zusammensetzen/herleiten, leider hab ich keine Ahnung, wie
> genau das funktioniert (und im Script nichts zu dem
> speziellen Fall gefunden). [keineahnung]
>  
> Grüße & Danke nitramGuk
>  
> Frage in keinem anderem Forum gestellt.


Gruß
MathePower

Bezug
        
Bezug
Tangentialebene: Aufgabe c.)
Status: (Antwort) fertig Status 
Datum: 17:45 Fr 29.05.2009
Autor: Loddar

Hallo nitramGuk!


Sieh mal []hier oder []hier.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]