matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenTangentialraum, Normalenraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Tangentialraum, Normalenraum
Tangentialraum, Normalenraum < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentialraum, Normalenraum: Zylinder/ Katenoid
Status: (Frage) überfällig Status 
Datum: 16:26 Do 06.11.2008
Autor: side

Aufgabe
Bestimme den Tangentialraum und den Normalenraum an einen beliebigen Punkt des Zylinders [mm] Z=\left\{(x,y,z)\in\IR^3:x^2+y^2=1\right\} [/mm] und des Katenoids [mm] M=\left\{(cosh(u)cos(v), cosh(u)sin(v),u)\in\IR^3:(u,v)\in\IR^2\right\}. [/mm]

zunächst der Tangentialraum des Zylinders; hab mir folgendes überlegt:
Es ist ja [mm] T_pZ=\left\{v=(v_1,v_2,v_3)\in\IR^3|=0\right\} [/mm] mit [mm] p=(x,y,z)\in\;Z [/mm] und [mm] F(x,y,z)=x^2+y^2-1. [/mm]
Demnach wäre gradF(p)=(2x,2y,0) oder?
Das würde bedeuten, dass [mm] T_pZ=\left\{v\in\IR^3|2xv_1+2yv_2=0\right\}. [/mm]
Im Internet habe ich aber mehrfach gelesen, dass gilt: [mm] T_pZ=\left\{v\in\IR^3|xv_1+yv_2=0\right\}. [/mm]
Wo liegt mein Fehler. Hab ich das Skalarprodukt falsch ausgerechnet?

Dann zum Normalenraum: Ich habe im Internet gefunden, dass gilt:
[mm] N_pZ=\left\{w\in\IR^3:v_2w_2=v_3w_3\; fuer\; alle\; v\in\;T_pZ\right\} [/mm]
Wie komm ich da hin? Ich erkenne den Weg noch nicht so wirklich.....

Jetzt das Katenoid:
Es gibt eine Definition für Parametrisierte Darstellungen:
Sei [mm] \psi: [/mm] D ⊂ [mm] R^n [/mm] → U eine Parametrisierung um x mit [mm] \psi(a) [/mm] = x. Dann gilt
T_xM = [mm] Im(d\psi(a)). [/mm] Ist das überhaupt eine Parameterdarstellung des Katenoids? Ich hab gefunden das folgendes gilt:
[mm] T_pM=\left\{v\in\IR^3|xv_1+y_v2-v_3*cosh(z)sinh(z)=0\right\} [/mm]
und
N_pM=R(gradF(p))=R(x,y,-cosh(z)sinh(z))
Aber wie zum Teufel komm ich dadrauf?
Danke für eure Hilfe

        
Bezug
Tangentialraum, Normalenraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:37 Mo 10.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]