matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylor-Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Taylor-Polynom
Taylor-Polynom < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Polynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:45 Mo 03.09.2007
Autor: ragsupporter

Aufgabe
Für folgende Funktionen ermittle und skizziere man die TAYLOR-Polynome der Ordnung m in [mm]x_0 = 0[/mm]:

a) f(x)=sin(x), m=1,3,5
b) g(x)=sinh(x), m=1,3,5
c) h(x)= cosh(x), m=0,2,4

Hallo,

Hab da mal zwei Fragen:

1. Sind die folgenden Ergebnisse richtig?
2. Wie kann ich die Taylor-Polynome nun skizzieren?

__________________________________________________________

a) [mm] \sin(x)=0+ (\bruch{1}{1!})*(x-0)+((\bruch{-1}{3!})*(x-0)^3)+((\bruch{1}{5!})*(x-0)^5)[/mm] [mm]= x- \bruch{x^3}{3!}+\bruch{x^5}{5!}=\summe_{n=0}^{\infty}(-1)^n*\bruch{x^{2n+1}}{(2n+1)!}[/mm]


b) [mm] \sinh(x)=0+ (\bruch{1}{1!})*(x-0)+((\bruch{1}{3!})*(x-0)^3)+((\bruch{1}{5!})*(x-0)^5)[/mm]
[mm]= x+ \bruch{x^3}{3!}+\bruch{x^5}{5!}=\summe_{n=0}^{\infty}\bruch{x^{2n+1}}{(2n+1)!}[/mm]

c)  [mm] \cosh(x)=1+ (\bruch{1}{1!})*(x-0)+((\bruch{1}{2!})*(x-0)^2)+((\bruch{1}{4!})*(x-0)^4)[/mm]
[mm]= 1+x+ \bruch{x^2}{2!}+\bruch{x^4}{4!}=\summe_{n=0}^{\infty}\bruch{x^{2n}}{(2n)!}[/mm]


Danke Markus

        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Mo 03.09.2007
Autor: leduart

Hallo
Die Reihen sind richtig, ausser dass du sie ja für m=1, 3 ,5 einzeln hinschreiben solltesst, und nicht dein Ende bis [mm] \infty. [/mm]
Da die gefragten Polynome  ja ne Gerade, Pol. 3. und 5-ten Grades sind, sollst du die einfach zeichnen, oder mit nem Funktionsplotter dir ansehen.
Gruss leduart

Bezug
                
Bezug
Taylor-Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 03.09.2007
Autor: ragsupporter

danke für die schnelle antwort.

aso alles klar. aber wie ich die funktion zeichne ist mir trotzdem net so ganz klar.

Bezug
                        
Bezug
Taylor-Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Mo 03.09.2007
Autor: Bastiane

Hallo ragsupporter!

> danke für die schnelle antwort.
>  
> aso alles klar. aber wie ich die funktion zeichne ist mir
> trotzdem net so ganz klar.

Na, im ersten Fall ist das Taylor-Polynom ersten Grades wohl nur das x - das zweiten Gerades dann das x zusammen mit dem [mm] x^3 [/mm] - war das [mm] x-x^3 [/mm] oder so ähnlich? Und dann das 5.Grades genau alles zusammen. Eine Gerade wirst du ja wohl zeichnen können - und für die anderen beiden Fälle musst du halt einfach eine Art Wertetabelle machen - oder du nimmst einen FUNKTIONENPLOTTER! Das sollte in der Uni eigentlich erlaubt sein - da kann man ja nicht die krummsten Funktionen mit der Hand zeichnen - ansonsten lässt du sie dir plotten und zeichnest sie ab.

Ein Beispiel wäre z. B. auch []das hier - Prinzip der Taylorpolynome ist ja, dass sie - je mehr Summanden man ausrechnet - die Funktion immer genauer approximieren. Und das sieht man ganz schön, wenn man sie so der Reihe nach plottet. :-)

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Taylor-Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mo 03.09.2007
Autor: ragsupporter

ah danke ich glaub jetzt geht mir ein licht auf... =)

Bezug
        
Bezug
Taylor-Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 Mo 03.09.2007
Autor: rainerS

Hallo Markus,

du hast einen Schreibfehler:

> c)  [mm]\cosh(x)=1+ (\bruch{1}{1!})*(x-0)+((\bruch{1}{2!})*(x-0)^2)+((\bruch{1}{4!})*(x-0)^4)[/mm]
>  
> [mm]= 1+x+ \bruch{x^2}{2!}+\bruch{x^4}{4!}=\summe_{n=0}^{\infty}\bruch{x^{2n}}{(2n)!}[/mm]

Die Summe am Schluss ist richtig, aber der zweite Term (x) ist zuviel:
[mm]\cosh x = 1 + \bruch{x^2}{2!}+\bruch{x^4}{4!} + \dots[/mm]

Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]