matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylor-Reihe Verständnisfrage.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Taylor-Reihe Verständnisfrage.
Taylor-Reihe Verständnisfrage. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor-Reihe Verständnisfrage.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Di 16.10.2012
Autor: kamnos

Hallo,

ich beschäftige mich gerade in der Strömungslehre mit Hydrostatik und in meinen Skript habe ich folgende Kräftebilanz, die für eine x-Komponente auf ein Volumenelement angreift.

[mm] \rho*f_x*dx*dy*dz+p(x)*dy*dz-p(x+dx)*dy*dz=0 [/mm]

Nun steht einfach nur da: Entwicklung letzter Term (also -(p(x+dx)*dy*dz) in Taylor Reihe ergibt: [mm] -(p(x)+\bruch{\partial p}{\partial x}*dx)dy*dz. [/mm]

Die allgemeine Form der Taylorentwicklung ist mir bekannt, ich kenn es aber nur so, dass man um eine Stelle z.B. [mm] x_0=3 [/mm] entwickelt.

Meine Ausgangsformelhier ist ja p(x+dx), aber wie finde ich zur Entwicklungsstelle und wie weit wird entwickelt?
Bzw. versteh ich grundsätzlich nicht, wie man dort auf einmal zu einer Taylorentwicklung kommt!?

Ich hoffe mir kann jemand auf die Sprünge helfen.

Grüße

Egon


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylor-Reihe Verständnisfrage.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Di 16.10.2012
Autor: Event_Horizon

Hallo!

Das hier Taylor zu nennen, ist schon fast übertreibung, es ist ja nur der lineare Term. Aber gut.

Der Entwicklungspunkt ist einfach x, und du willst wissen, wie der Funktionswert bei [mm] $x+\Delta [/mm] x$ ist Also ziehst du - ganz bildlich gesprochen - eine Tangente durch p(x). Die hat die Steigung [mm] \frac{dp}{dx}, [/mm] und damit wird der Funktionswert durch

[mm] $p(x+\Delta x)=p(x)+\frac{dp}{dx}*\Delta [/mm] x$

Ich hab das dx mal gegen [mm] $\Delta [/mm] x$ getauscht, damit es deutlicher wird.

Bezug
                
Bezug
Taylor-Reihe Verständnisfrage.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:00 Di 16.10.2012
Autor: kamnos

Vielen Dank für die Antwort!

Das macht natürlich einiges klarer. Habe wohl durch das Skript und den Hinweis auf Taylor zu umständlich gedacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]