matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenTaylor Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Taylor Polynom
Taylor Polynom < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Fr 16.07.2010
Autor: marc1001

Aufgabe
Geben sie für die Funktion f_(x,y) [mm] =(2x-\bruch{3}{\pi}*y+2)^3+sin(x+y) [/mm] an der Stelle [mm] (x_0,y_0) =(0,\bruch{\pi}{2}) [/mm] das Taylor Polynom bis einschließlich Ordnung 2 an.  

Kann man mir bitte erklären wie ich das Taylor Polynom im 2D raum berechnen.

Ich muss doch die Partiellen Ableitungen bilden?
Und wie genau sieht das Polynom dann aus. Bitte verweist mich nicht auf wikipdia. Die mathematischen Definitionen helfen mir wirklich nicht weiter.

Ich hab auch schon gelesen das man hier mit der Hesse Matrix irgendwie weiter kommen soll. Stimmt das? Und wenn ja in wie fern

Danke schon mal

        
Bezug
Taylor Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Fr 16.07.2010
Autor: MathePower

Hallo marc1001,

> Geben sie für die Funktion f_(x,y)
> [mm]=(2x-\bruch{3}{\pi}*y+2)^3+sin(x+y)[/mm] an der Stelle [mm](x_0,y_0) =(0,\bruch{\pi}{2})[/mm]
> das Taylor Polynom bis einschließlich Ordnung 2 an.
> Kann man mir bitte erklären wie ich das Taylor Polynom im
> 2D raum berechnen.
>
> Ich muss doch die Partiellen Ableitungen bilden?


Ja.


> Und wie genau sieht das Polynom dann aus. Bitte verweist
> mich nicht auf wikipdia. Die mathematischen Definitionen
> helfen mir wirklich nicht weiter.

Das Taylorpolynom zweiter Ordnung ergibt sich dann so:

[mm]T_{2}\left(x,y\right)=f\left(x_{0},y_{0}\right)+f_{x}\left(x_{0},y_{0}\right)*\left(x-x_{0}\right)+f_{y}\left(x_{0},y_{0}\right)*\left(x-x_{0}\right)[/mm]
[mm]+\bruch{1}{2}*\left( \ f_{xx}\left(x_{0},y_{0}\right)*\left(x-x_{0}\right)^{2} + 2*f_{xy}\left(x_{0},y_{0}\right)*\left(x-x_{0}\right)*\left(y-y_{0}\right) + f_{yy}\left(x_{0},y_{0}\right)*\left(y-y_{0}\right)^{2}\ \right)[/mm]


Das Taylorpolynom kannst Du Dir auch selbst herleiten.

Setze dazu an:

[mm]f\left(x,y\right)=\summe_{i=1}^{\infty}\summe_{j=1}^{\infty}a_{ij}*\left(x-x_{0}\right)^{i}*\left(y-y_{0}\right)^{j}[/mm]

Um die Koeffizienten [mm]a_{ij}[/mm] zu bestimmen, bildest Du den Funktionswert
mit sämtlichen partiellen Ableitungen an der Stelle [mm]\left(x_{0},\ y_{0}\right)[/mm]


>
> Ich hab auch schon gelesen das man hier mit der Hesse
> Matrix irgendwie weiter kommen soll. Stimmt das? Und wenn
> ja in wie fern


Nun, der Ausdruck

[mm] f_{xx}\left(x_{0},y_{0}\right)*\left(x-x_{0}\right)^{2} + 2*f_{xy}\left(x_{0},y_{0}\right)*\left(x-x_{0}\right)*\left(y-y_{0}\right) + f_{yy}\left(x_{0},y_{0}\right)*\left(y-y_{0}\right)^{2}[/mm]


kann mit Hilfe der Hesse-Matrix so geschrieben werden:

[mm]\pmat{x-x_{0} & y-y_{0}}*\pmat{f_{xx}\left(x_{0},y_{0}\right) && f_{xy}\left(x_{0},y_{0}\right) \\ f_{xy}\left(x_{0},y_{0}\right) && f_{yy}\left(x_{0},y_{0}\right)}*\pmat{x-x_{0} \\ y-y_{0}}[/mm]


>  
> Danke schon mal  


Gruss
MathePower

Bezug
                
Bezug
Taylor Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Fr 16.07.2010
Autor: marc1001

Das würde dann so aussehen.

[mm] \bruch{5}{4}+1,5*(x-0)-\bruch{9}{4\pi}*(x-0)+\bruch{1}{2}[11*(x-0)^2+2*(-\bruch{18}{\pi^2}-1)(x-0)(y-\bruch{\pi}{2})+\bruch{27}{\pi^2}-1*(y-\bruch{\pi}{2})] [/mm]

[mm] =\bruch{5}{4}+1,5*x--\bruch{9}{4\pi}*x+\bruch{1}{2}[11x^2+2*(-\bruch{18}{\pi^2}-1)(x-0)(y-\bruch{\pi}{2})+\bruch{27}{\pi^2}-1*(y-\bruch{\pi}{2})] [/mm]

das wäre doch dann das Polynom?


Bezug
                        
Bezug
Taylor Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Fr 16.07.2010
Autor: MathePower

Hallo marc1001,

> Das würde dann so aussehen.
>
> [mm]\bruch{5}{4}+1,5*(x-0)-\bruch{9}{4\pi}*(x-0)+\bruch{1}{2}[11*(x-0)^2+2*(-\bruch{18}{\pi^2}-1)(x-0)(y-\bruch{\pi}{2})+\bruch{27}{\pi^2}-1*(y-\bruch{\pi}{2})][/mm]


Die rot markierten Ausdrücke stimmen nicht:

Bei den blau markierten Ausdrücken hast Dich verschrieben:


[mm]\red{\bruch{5}{4}}+1,5*(x-0)-\bruch{9}{4\pi}*(\blue{y}-0)+\bruch{1}{2}[11*(x-0)^2+2*(-\bruch{18}{\red{\pi^2}}-1)(x-0)(y-\bruch{\pi}{2})+\left(\bruch{27}{\pi^2}-1\right)*(y-\bruch{\pi}{2})][/mm]


>  
> [mm]=\bruch{5}{4}+1,5*x--\bruch{9}{4\pi}*x+\bruch{1}{2}[11x^2+2*(-\bruch{18}{\pi^2}-1)(x-0)(y-\bruch{\pi}{2})+\bruch{27}{\pi^2}-1*(y-\bruch{\pi}{2})][/mm]
>  
> das wäre doch dann das Polynom?
>  



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]