matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisTaylor formel (sin, cos)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Taylor formel (sin, cos)
Taylor formel (sin, cos) < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor formel (sin, cos): Frage
Status: (Frage) beantwortet Status 
Datum: 16:57 Sa 30.04.2005
Autor: raschid

Mit Hilfe der Taylor-Formel sind rationale Approximationen der Funktionswerte
sin 1 und cos 1 mit einer Genauigkeit von  [mm] 10^{-9} [/mm]  anzugeben. Wie lauten die ersten 8 Nachkommastellen von sin 1 und cos 1?

das ist die Taylor Formel: f(x) = f(0) + f'(0) / 1! x + f''(0) / 2! [mm] x^{2} [/mm] + ... usw
Aber ich weiß nicht wie man die Formel benutzt bzw was man einsetzen muss.
Könnte jemanden für mich sinus zeigen dann kann ich cosinus selber machen, Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Taylor formel (sin, cos): Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Sa 30.04.2005
Autor: Max

Hallo Rashid,

da du ja die Taylorformel an sich kennst musst du ja nur noch die Ableitungen von [mm] $\sin(x)$ [/mm] bzw. [mm] $\cos(x)$ [/mm] an der Stelle [mm] $x_0=0$ [/mm] bestimmen. Das sollte aber kein Problem sein.

Interessanter ist wie viele Glieder der Taylorentwicklung du betrachten musst um sicher zu sein, dass der Fehler kleiner [mm] $10^{-9}$ [/mm] liegt. Dafür musst du das Lagransche Restglied der Taylorschen Formel

[mm] $R_n(x)=\frac{f^{(n+1)}(\zeta)}{(n+1)!}(x-x_0)^{n+1}$ [/mm]

abschätzen. Wenn du mal die Ableitungen von [mm] $\sin(x)$ [/mm] gebildet hast wird dir sicherlich eine geeignete Konstante einfallen, so dass [mm] $\left| f^{(n+1)}(\zeta)\right|\le [/mm] M$ für alle [mm] $\zeta$. [/mm]

Damit kannst du ausrechnen, wie viele Glieder du tatsächlich bestimmen musst.

Gruß Max



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]