Taylorentwicklung < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:26 Di 26.12.2006 | Autor: | vicky |
Aufgabe | Schätzen Sie das Restglied ab und beantworten Sie:
Konvergiert die Taylorreihe von f(x) = exp [mm] \bruch{-1}{x^2} [/mm] um den Entwicklungspunkt a = 1 auf ganz [mm] \IR [/mm] gegen f? |
Hallo zusammen,
habe hier ein kleines Problem. Soll diese Aufgabe eigentlich mit Hilfe von Maple beantworten doch ich weiß leider nicht genau wie ich da vorgehen muß.
Es kann ja auch sein das o.g. Funktion nicht auf ganz [mm] \IR [/mm] gegen f konvergiert. Daher meine Frage, wie gehe ich bei so etwas allgemein vor?
Für das Restglied habe ich zwei Formen gefunden. Einmal Integral-Form für [mm] R_{n+1} [/mm] und Lagrange-Form für [mm] R_{n+1}. [/mm] Wenn der Limes des Restgliedes gegen Null geht dann wird der Fehler beim Taylorpolynom mit zunehmenden Exponenten ja immer geringer und die Taylorreihe müsste doch dann sich immer mehr an die Funktion annähern und somit konvergiert sie doch dann gegen die Funktion oder habe ich das falsch verstanden.
Bin für jede Hilfe dankbar.
Gruß
vicky
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:03 Di 26.12.2006 | Autor: | setine |
Hi Vicky
Ich glaube der 2. Teil der Frage lässt sich beantworten, indem man begründet, dass [mm] \exp(-1/x^2) [/mm] unstetig im Punkt x=0 ist.
Da aber Polynomfunktionen (Die Taylor-Entwicklung ist ja eine solche) aber immer stetig sind, kann die Taylor-Entwicklung nicht auf ganz [mm] \IR [/mm] konvergieren.
Bin mir aber ehrlich gesagt nicht wirklich sicher ob dass so genügt, oder man "annimt" dass die Fkt auf ganz [mm] \IR [/mm] definiert sein soll.
Gruss, Setine
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:10 Mi 27.12.2006 | Autor: | felixf |
Hallo!
> Schätzen Sie das Restglied ab und beantworten Sie:
>
> Konvergiert die Taylorreihe von f(x) = exp [mm]\bruch{-1}{x^2}[/mm]
> um den Entwicklungspunkt a = 1 auf ganz [mm]\IR[/mm] gegen f?
> Hallo zusammen,
>
> habe hier ein kleines Problem. Soll diese Aufgabe
> eigentlich mit Hilfe von Maple beantworten doch ich weiß
> leider nicht genau wie ich da vorgehen muß.
Mal ganz allgemein: Ich denke, dass die Taylorreihe sowieso nur den Konvergenzradius 1 hat und somit nicht auf ganz [mm] $\IR$ [/mm] konvergieren kann und insb. nicht mit $f$ uebereinstimmt. (Das sieht man mit etwas Funktionentheorie-Kenntnissen: die Funktion $f : [mm] \IC \setminus \{ 0 \} \to \IC$, [/mm] $z [mm] \mapsto \exp(-1/z^2)$ [/mm] hat bei $z = 0$ eine wesentliche Singularitaet.)
> Es kann ja auch sein das o.g. Funktion nicht auf ganz [mm]\IR[/mm]
> gegen f konvergiert. Daher meine Frage, wie gehe ich bei
> so etwas allgemein vor?
> Für das Restglied habe ich zwei Formen gefunden. Einmal
> Integral-Form für [mm]R_{n+1}[/mm] und Lagrange-Form für [mm]R_{n+1}.[/mm]
> Wenn der Limes des Restgliedes gegen Null geht dann wird
> der Fehler beim Taylorpolynom mit zunehmenden Exponenten ja
> immer geringer und die Taylorreihe müsste doch dann sich
> immer mehr an die Funktion annähern und somit konvergiert
> sie doch dann gegen die Funktion oder habe ich das falsch
> verstanden.
Doch, du hast es richtig verstanden. Du musst also zeigen, dass das Restglied nicht fuer jedes $x$ gegen 0 geht.
LG Felix
|
|
|
|