matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Taylorentwicklung
Taylorentwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Mi 01.09.2010
Autor: monstre123

Aufgabe
Berechnen Sie die Taylorreihen der folgenden Funktionen mit den angegebenen Entwicklungspunkten [mm] x_{0}. [/mm] Bestimmen Sie den jeweiligen Konvergenzradius.

ii) [mm] 1+x-2x^{2} [/mm]  mit [mm] x_{0}=1 [/mm]

Guten Abend,

meine Frage ist bezüglich des Konvergenzradiuses:

[mm] f(x)=f(x)=f(x_{0})+\bruch{f'(x_{0})}{1!}(x-x_{0})+\bruch{f''(x_{0})}{2!}(x-x_{0})^{2}+...+\bruch{f^{n}(x_{0})}{n!}(x-x_{0})^{n} [/mm]

[mm] f(x)=(1+1-2*1^{2})+\bruch{1-4*1}{1!}(x-1)+\bruch{-4}{2!}(x-1)^{2}+\bruch{0}{3!}(x-1)^{3}+\bruch{0}{4!}(x-1)^{4}+... [/mm]

[mm] f(x)=-3(x-1)-2(x-1)^{2} [/mm]


meine Frage zum Konvergenzradius: Ist jetzt das [mm] a_{n}=-3 [/mm] und [mm] a_{n}=-2 [/mm] ? die haben aber kein n ??? oder kann ich [mm] a_{n}=-4+n [/mm] definieren?

        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mi 01.09.2010
Autor: rainerS

Hallo!

Deine Frage verstehe ich überhaupt nicht. In deiner Taylorreihe sind doch nur die beiden Glieder zu den Indizes 1 und 2 von 0 verschieden. Also ist der Konvergenzradius [mm]\infty[/mm].

  Viele Grüße
    Rainer


Bezug
                
Bezug
Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mi 01.09.2010
Autor: monstre123


> Hallo!
>  
> Deine Frage verstehe ich überhaupt nicht. In deiner
> Taylorreihe sind doch nur die beiden Glieder zu den Indizes
> 1 und 2 von 0 verschieden. Also ist der Konvergenzradius
> [mm]\infty[/mm].

Sry, aber irgendwie verstehe das nicht. wieso soll der Konvergenzradius [mm] \infty [/mm] sein?

>  
> Viele Grüße
>      Rainer
>  


Bezug
                        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Mi 01.09.2010
Autor: rainerS

Hallo!

> Sry, aber irgendwie verstehe das nicht. wieso soll der
> Konvergenzradius [mm] $\infty$ [/mm] sein?

Es gibt nur endlich viele Glieder, also stellt sich die Frage der Konvergenz nicht. Die (endliche) Summe stellt für beliebige x die Funktion dar, also ist der Konvergenzradius [mm] $\infty$. [/mm]

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]