matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisTaylorentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Taylorentwicklung
Taylorentwicklung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:02 Do 16.06.2005
Autor: Mikke

Hallo! und zwar soll die Zahl [mm] 1,05^{1.02} [/mm] mit einem Fehler der kleiner ist als [mm] 10^{-4} [/mm] berechnen. als hinweis hab ich eine geeignete taylorentwicklung der funktion f(x,y)= [mm] x^{y} [/mm] zu betrachten.
Wär schön wenn mir wer helfen könnte. könntet mir ja eventuell diese aufgabe vorrechnen denn ich muss noch mehr dieser art rechnen und es wär gut wenn ich mich woran orientieren könnte. danke schon mal und lieber gruß

        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Do 16.06.2005
Autor: SEcki


> Hallo! und zwar soll die Zahl [mm]1,05^{1.02}[/mm] mit einem Fehler
> der kleiner ist als [mm]10^{-4}[/mm] berechnen. als hinweis hab ich
> eine geeignete taylorentwicklung der funktion f(x,y)= [mm]x^{y}[/mm]
> zu betrachten.

Mach das doch mal! Dabei hat man doch immer eine Restgliedabschätzung. Du musst also solange Taylorpolynome berechnen, bis das Restglied im passenden Intervall durch [mm]10^{-4}[/mm] abgeschätzt werden kann. Wenn du deine Ergebmiss hiereinschreibst, werden sie wohl auch üpberprüft.

SEcki

Bezug
        
Bezug
Taylorentwicklung: Frage
Status: (Frage) beantwortet Status 
Datum: 22:20 Do 16.06.2005
Autor: kruder77

Hallo,

mich würde das allgemeine Schema interessieren, ich kenne bislang nur die Taylorentwicklung für Funktionen mit einer Veränderlichen  f(x) und nicht für f(x,y). Wie geht man dort vor? Muss man das partiell betrachten oder wie funktioniert das?

Gruß
kruder77

Bezug
                
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 Fr 17.06.2005
Autor: Fabian

Hallo kruder77,

Das Taylorpolynom n-ten Grades von f bei [mm] (x_{0},y_{0}) [/mm] ist das Polynom:


[mm] T_n \left( {x,y} \right) [/mm] = [mm] \sum\limits_{}^{} {\frac{1}{{k!}}\left( {\frac{\partial }{{\partial x}}\left( {x - x_0 } \right) + \frac{\partial }{{\partial y}}\left( {y - y_0 } \right)} \right)^k \cdot f\left( {x_0 ,y_0 } \right)} [/mm]

Das Taylorpolynom 1-ten Grades würde dann folgendermaßen lauten:


[mm] T_1 \left( {x,y} \right) [/mm] = [mm] f\left( {x_0 ,y_0 } \right) [/mm] + [mm] f_x \left( {x_0 ,y_0 } \right)\left( {x - x_0 } \right) [/mm] + [mm] f_y \left( {x_0 ,y_0 } \right)\left( {y - y_0 } \right) [/mm]

Das Taylorpolynom 2-ten Grades:

Taylorpolynom 2-ten Grades

Du mußt jetzt nur noch die einzelnen partiellen Ableitungen berechnen und einsetzen!

Ich hoffe das hilft dir ein wenig weiter!

Viele Grüße

Fabian





Bezug
                        
Bezug
Taylorentwicklung: Danke schön...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:11 Fr 17.06.2005
Autor: kruder77

Hallo Fabian,

super, vielen Dank für Deine Antwort [ok] !

Gruß kruder77

Bezug
                        
Bezug
Taylorentwicklung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:40 Fr 17.06.2005
Autor: kruder77

Hi Fabian,

ist dann folgendes richtig?

[mm] T_{3}(x;y)=T_{1}(x;y)+T_{2}(x;y)+\bruch{1}{3!}*[f_{xxx}(x_{0};y_{0})(x-x_{0})^{3}+3*f_{xxy}(x_{0};y_{0})(x-x_{0})^{2}*(y-y_{0})+3*f_{xyy}(x_{0};y_{0})(x-x_{0})*(y-y_{0})^{2}+f_{yyy}(x_{0};y_{0})(y-y_{0})^{3})] [/mm]

Gruß & Danke
kruder77

Bezug
                                
Bezug
Taylorentwicklung: Fast richtig!
Status: (Antwort) fertig Status 
Datum: 10:00 Fr 17.06.2005
Autor: Fabian

Hallo kruder77,

Wenn du das [mm] T_{1}(x,y) [/mm] streichst, dann ist es richtig. Das Taylorpolynom 1-ten Grades kommt schon im Taylorpolynom 2-Grades vor!

[mm] T_{2}=T_{1}(x,y)+$ \frac{1}{2}\left( {f_{xx} \left( {x_0 ,y_0 } \right)\left( {x - x_0 } \right)^2 + 2f_{xy} \left( {x_0 ,y_0 } \right)\left( {x - x_0 } \right)\left( {y - y_0 } \right) + f_{yy} \left( {x_0 ,y_0 } \right)\left( {y - y_0 } \right)^2 } \right) [/mm] $

Also:

$ [mm] T_{3}(x;y)=T_{2}(x;y)+\bruch{1}{3!}\cdot{}[f_{xxx}(x_{0};y_{0})(x-x_{0})^{3}+3\cdot{}f_{xxy}(x_{0};y_{0})(x-x_{0})^{2}\cdot{}(y-y_{0})+3\cdot{}f_{xyy}(x_{0};y_{0})(x-x_{0})\cdot{}(y-y_{0})^{2}+f_{yyy}(x_{0};y_{0})(y-y_{0})^{3})] [/mm] $

Viele Grüße

Fabian



Bezug
                                        
Bezug
Taylorentwicklung: jupp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:19 Fr 17.06.2005
Autor: kruder77

ja, das klingt logisch...
na zum glück habe ich nochmal nachgefragt :-)
vielen dank nochmal!!!

gruß kruder77

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]