matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisTaylorpolynom und Landaunotat.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Taylorpolynom und Landaunotat.
Taylorpolynom und Landaunotat. < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorpolynom und Landaunotat.: Erklärung
Status: (Frage) beantwortet Status 
Datum: 20:39 Fr 24.01.2014
Autor: barneyc

Aufgabe
Satz:

Sei f: I [mm] \to \IR [/mm] eine m-mal stetig differenzierbare Funktion, [mm] x_{0} \in [/mm] I und [mm] T_{m} (x_{0};x) [/mm] das m-te Taylorpolynom. Dann ist:

[mm] R_{m+1}(x_{0};x_{0}+h) [/mm] = [mm] f(x_{0}+h)-T_{m}(x_{0};x_{0}+h) [/mm] = [mm] O(h^{m}) [/mm]

Falls f zusätzlich (m+1) mal stetig diffbar ist, gilt :

[mm] R_{m+1}(x_{0};x_{0}+h)=O(h^{m+1}) [/mm]

Hallo,

ich verstehe den Satz leider gar nicht und bitte euch um eine verständliche Erklärung(-shilfe).
Das m+1-te Restglied ist die Funktion abzüglich des m-ten Taylorpolynoms? Ist das so richtig?
Doch wieso soll das [mm] O(h^{m}) [/mm] sein? Ich seh da keinerlei Zusammenhang.

(("O" ist das "GROß-O" in der Landau Notation))
Danke im Voraus


        
Bezug
Taylorpolynom und Landaunotat.: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Sa 25.01.2014
Autor: fred97


$ [mm] R_{m+1}(x_{0};x_{0}+h)=O(h^{m+1}) [/mm] $

bedeutet:

[mm] \bruch{ R_{m+1}(x_{0};x_{0}+h)}{ h^{m+1}} [/mm] ist in einer Umgebung von 0 beschränkt.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 57m 5. kcin
MaßTheo/Bestimmung einer Menge
Status vor 8h 18m 2. fred97
UAnaInd/Vollständige Induktion
Status vor 9h 56m 9. Roadrunner
UKomplx/komplexe Wurzelfunktion
Status vor 23h 17m 6. questionpeter
UWTheo/Markov-Kette
Status vor 1d 0h 22m 7. sancho1980
IntTheo/Uneigentliches Integral
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]