matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Taylorreihe
Taylorreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Sa 16.07.2016
Autor: Kruemelmonster2

Ich habe ein paar verständnisprobleme was Taylorreihen angeht.
Und zwar konvergiert die Taylorreihe (sofern sie überhaupt konvergiert) nicht zwangsläufig gegen ihre Funktion.

Dazu haben wir im Skript folgendes Beispiel betrachtet:

Sei [mm] $f:\IR\to \IR$ [/mm] mit

[mm] $f\left(x\right)=\begin{cases} e^{-\frac{1}{\left|x\right|}} & \text{für }x\not=0\\ 0 & \text{für }x=0 \end{cases}$ [/mm]

Nun folgt ein langer beweis, dass die Funktion [mm] $f^{(k+1)}(0)=0$ [/mm] ist.

Nun wird gesagt:

Daher hat $f $ bei $0$ die auf ganz [mm] $\IR$ [/mm] konvergente Taylor-Reihe:



[mm] $\sum_{k=0}^{n}\frac{f^{k}\left(0\right)}{k!}x^{k}=0$. [/mm]

Diese Taylorreihe stellt offensichtlich $f$ in keinem Punkt außer $0$ dar.

Soweit sogut.

Gilt [mm] $\underset{n\to\infty}{\lim}R_{x_{0}}^{n}f\left(x\right)=0$, [/mm] dann konverigert die Tylorreihe bei $x$ gegen $f(x)$



Nun gilt nach der Lagrange-Form des Restgliedes:

[mm] $R_{0}^n [/mm] f(x)= [mm] \frac{1}{(n+1)!} f^{(n+1)}(\xi) x^{n+1}$ [/mm] mit einem [mm] $\xi$ [/mm] zwischen $x$ und [mm] $x_0$. [/mm]

Hier muss ich zugeben, dass mir nicht ganz klar ist was "zwischen" bedeuten soll. [mm] $x_0$ [/mm] wäre bei dem Beispiel ja grade $0$.
x ist aber doch variable und kann alles sein. Heißt zwischen dann:

[mm] $\xi \in [/mm] (x,0) [mm] \vee \xi\in [/mm] (0, x)$ ?


Falls ja wäre ja


[mm] $R_{0}^n [/mm] f(x)= [mm] \frac{\pm p_n (\frac{1}{\xi})e^{-\frac{1}{|\xi|}}}{(n+1)!} x^{n+1} \to [/mm] 0$, da Fakultäten schneller wachsen als jede Potenz.

[mm] p_k [/mm] steht in dem Fall für ein geeignetes polynom und den Term [mm] $f^{(n)}=\pm p_n (\frac{1}{x})e^{-\frac{1}{|x|}} [/mm]

hatten wir als k-te Ableitung herausgefunden.

Was ist hier falsch?

Ich habe es so verstanden: Eine Taylorreihe konvergiert genau dann gegen die Funktion, wenn das Restglied gegen 0 geht. Dies ist aber hier der Fall. Die Taylorreihe stellt f aber nur in der 0 da.

Also gilt das ganze doch nicht. Oder habe ich was bei der Betrachtung des Restgleides falsch gemacht?

Ich wäre euch mega dankbar wenn mir jemand weiterhelfen könnte, da ich dort schon seit tagen drüber nachdenke und einfach nicht weiter komme.

Mfg. Krümmelmonster


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 02:20 So 17.07.2016
Autor: HJKweseleit


> Ich habe ein paar verständnisprobleme was Taylorreihen
> angeht.
>  Und zwar konvergiert die Taylorreihe (sofern sie
> überhaupt konvergiert) nicht zwangsläufig gegen ihre
> Funktion.
>  
> Dazu haben wir im Skript folgendes Beispiel betrachtet:
>  
> Sei [mm]f:\IR\to \IR[/mm] mit
>
> [mm]$f\left(x\right)=\begin{cases} e^{-\frac{1}{\left|x\right|}} & \text{für }x\not=0\\ 0 & \text{für }x=0 \end{cases}$[/mm]
>  
> Nun folgt ein langer beweis, dass die Funktion
> [mm]f^{(k+1)}(0)=0[/mm] ist.
>  
> Nun wird gesagt:
>  
> Daher hat [mm]f[/mm] bei [mm]0[/mm] die auf ganz [mm]\IR[/mm] konvergente
> Taylor-Reihe:
>  
>
>
> [mm]\sum_{k=0}^{n}\frac{f^{k}\left(0\right)}{k!}x^{k}=0[/mm].
>  
> Diese Taylorreihe stellt offensichtlich [mm]f[/mm] in keinem Punkt
> außer [mm]0[/mm] dar.
>  
> Soweit sogut.
>  
> Gilt
> [mm]\underset{n\to\infty}{\lim}R_{x_{0}}^{n}f\left(x\right)=0[/mm],
> dann konverigert die Tylorreihe bei [mm]x[/mm] gegen [mm]f(x)[/mm]
>  
>
>
> Nun gilt nach der Lagrange-Form des Restgliedes:
>  
> [mm]R_{0}^n f(x)= \frac{1}{(n+1)!} f^{(n+1)}(\xi) x^{n+1}[/mm] mit
> einem [mm]\xi[/mm] zwischen [mm]x[/mm] und [mm]x_0[/mm].
>  
> Hier muss ich zugeben, dass mir nicht ganz klar ist was
> "zwischen" bedeuten soll. [mm]x_0[/mm] wäre bei dem Beispiel ja
> grade [mm]0[/mm].
>  x ist aber doch variable und kann alles sein. Heißt
> zwischen dann:
>  
> [mm]\xi \in (x,0) \vee \xi\in (0, x)[/mm] ?


Ja.

Man kann eine Taylorreihe auch um einen anderen Punkt als 0 entwickeln, nennen wir ihn mal a (falls du das noch nicht kennst: Es ist nicht wichtig, jetzt zu wissen, wie man das macht und was das bedeutet). Das [mm] \xi [/mm] liegt dann irgendwo zwischen a und x einschließlich (wobei x dann auch eine Zahl sein kann), also in [a|x] oder in [x|a], je nachdem ob a>x oder x>a ist.


>  
>
> Falls ja wäre ja
>
>
> [mm]R_{0}^n f(x)= \frac{\pm p_k (\frac{1}{\xi})e^{-\frac{1}{|\xi|}}}{(n+1)!} x^{n+1} \to 0[/mm],
> da Fakultäten schneller wachsen als jede Potenz.
>  
> [mm]p_k[/mm] steht in dem Fall für ein geeignetes polynom und den
> Term [mm]$f^{(k)}=\pm p_k (\frac{1}{x})e^{-\frac{1}{|x|}}[/mm]
>  
> hatten wir als k-te Ableitung herausgefunden.

Ja, fast alles richtig.
Aber:

Du kennst das jeweilige Polynom nicht. Ich schreibe dir mal die ersten auf (aber nicht mit 1/x, sondern mit x als Argument):

[mm] p_0(x)=1 [/mm]

[mm] p_1(x)=\bruch{|x|}{x^3} [/mm]

[mm] p_2(x)=\bruch{(6x^2+1)|x|-6x^2}{x^7} [/mm]

[mm] p_3(x)= [/mm] - [mm] \bruch{(24x^2+12)|x|-36x^2-1}{x^8} [/mm]

[mm] p_4(x)= \bruch{(120x^4+120x^2+1)|x|-240x^4-20x^2}{x^{11}} [/mm]


Wenn du jetzt durch die entsprechende Fakultät dividierst, siehst du, dass in den Polynomen die Koeffizienten ebenfalls in etwa wie die Fakultäten wachsen und daher der Limes nicht gegen 0 geht, wenn man für x [mm] \xi [/mm] einsetzt.




>  
> Was ist hier falsch?
>  
> Ich habe es so verstanden: Eine Taylorreihe konvergiert
> genau dann gegen die Funktion, wenn das Restglied gegen 0
> geht. Dies ist aber hier der Fall. Die Taylorreihe stellt f
> aber nur in der 0 da.
>  
> Also gilt das ganze doch nicht. Oder habe ich was bei der
> Betrachtung des Restgleides falsch gemacht?
>  
> Ich wäre euch mega dankbar wenn mir jemand weiterhelfen
> könnte, da ich dort schon seit tagen drüber nachdenke und
> einfach nicht weiter komme.
>  
> Mfg. Krümmelmonster
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Mo 18.07.2016
Autor: Gonozal_IX

Hiho,

HJKweseleit hat dir zwar ein Beispiel gegeben, unter dessen Umständen deine Argumentation nicht stimmen muss, allerdings gilt in deinem Beispiel [mm] $p_n(x) \sim x^{2n}$. [/mm] Der Faktor vor dem höchsten Polynomterm ist also immer 1.

Warum passt deine Argumentation trotzdem nicht?

In deiner Betrachtung gehst du davon aus, dass für jedes Restglied [mm] $R_n$ [/mm] dasselbe [mm] $\xi$ [/mm] zur Beschreibung verwendet wird. Das stimmt aber im Allgemeinen gar nicht.

Das kannst du mal direkt versuchen für [mm] $R_5$,$R_6$ [/mm] und [mm] $R_7$ [/mm] zu verifizieren.

Korrekt wäre deine Gleichung also in der Form:

$ [mm] R_{0}^n [/mm] f(x)= [mm] \frac{\pm p_n (\frac{1}{\xi_n})e^{-\frac{1}{|\xi_n|}}}{(n+1)!} x^{n+1} \to [/mm] 0 $

Und du erkennst, dass der Grenzwert von der (möglicherweise nicht mal konvergenten) Folge [mm] $(\xi_n)_{n\in\IN}$ [/mm] abhängt.

Gruß,
Gono


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]