matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationTaylorreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Taylorreihe
Taylorreihe < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:25 Sa 17.11.2018
Autor: sancho1980

Aufgabe
Nähern Sie die Funktion f(x) = cos(2x) durch ihr Taylorpolynom [mm] T_4(x) [/mm] mit Entwicklungspunkt [mm] x_0 [/mm] = [mm] \bruch{\pi}{2} [/mm]

Hallo!
Mein Buch gibt folgende Lösung vor:

-1 + 2(x - [mm] \bruch{\pi}{2})^2 [/mm] - [mm] \bruch{2}{3}(x [/mm] - [mm] \bruch{\pi}{2})^4 [/mm]

Ich hingegen komme auf

[mm] \bruch{4}{3}x^3 [/mm] - 2 [mm] \pi x^2 [/mm] + [mm] ({\pi}^2 [/mm] - 2)x + [mm] \pi [/mm] - [mm] \bruch{{\pi}^3}{6} [/mm]

Bevor ich jetzt den Autor anschreibe, würde mich nochmal eure Meinung interessieren, ob ich irgendwie auf dem Schlauch stehe?

        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Sa 17.11.2018
Autor: fred97


> Nähern Sie die Funktion f(x) = cos(2x) durch ihr
> Taylorpolynom [mm]T_4(x)[/mm] mit Entwicklungspunkt [mm]x_0[/mm] =
> [mm]\bruch{\pi}{2}[/mm]
>  Hallo!
>  Mein Buch gibt folgende Lösung vor:
>  
> -1 + 2(x - [mm]\bruch{\pi}{2})^2[/mm] - [mm]\bruch{2}{3}(x[/mm] -
> [mm]\bruch{\pi}{2})^4[/mm]
>  
> Ich hingegen komme auf
>  
> [mm]\bruch{4}{3}x^3[/mm] - 2 [mm]\pi x^2[/mm] + [mm]({\pi}^2[/mm] - 2)x + [mm]\pi[/mm] -
> [mm]\bruch{{\pi}^3}{6}[/mm]

Das hast  Du  ja  gewaltig vermasselt.  Das  stimmt  hinten und vorne nicht.

>  
> Bevor ich jetzt den Autor anschreibe, würde mich nochmal
> eure Meinung interessieren, ob ich irgendwie auf dem
> Schlauch stehe?

Ob, wie, wo und warum Du auf  dem Schlauch stehst kann Dir niemand sagen, denn Du hast  ja völlig verschwiegen,  wie Du auf Dein merkwürdiges Polynom gekommen  bist.

Hellsehen kann hier keiner.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]