matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTaylorreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Taylorreihe
Taylorreihe < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Sa 10.01.2009
Autor: Mr._Calculus

Aufgabe
Geben Sie die Taylorreihe um x=0 für
[mm] \wurzel{1+x^2} [/mm]
an.

Hallo,

mittlerweile hab ich mir schon eine ganze Weile Gedanken über diese Funktion gemacht. Die Ableitungen zeigen kein Schema (für mich), also denke ich muss man die Reihe über eine andere bekannte herleiten. Da ja
[mm] (\wurzel{1+x^2})' [/mm] = [mm] \bruch{x}{\wurzel{1+x^2}}=x*(arcsinh(x))' [/mm] könnte man ja diese Reihe versuchen zu bestimmen, obwohl es sicherlich auch nicht trivial ist, diese Reihe aufzustellen.

Wäre super, wenn mich jemand auf den richtigen Weg bringen könnte. Vielen Dank
Mr._Calculus

        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Sa 10.01.2009
Autor: reverend

Also, ich sehe da ein Schema...

[mm] f(x)=(1+x^2)^{\bruch{1}{2}} [/mm]

[mm] f'(x)=x*(1+x^2)^{-\bruch{1}{2}} [/mm]

[mm] f''(x)=(1+x^2)^{-\bruch{3}{2}} [/mm]

[mm] f'''(x)=-3x*(1+x^2)^{-\bruch{5}{2}} [/mm]

[mm] f''''(x)=3*(4x^2-1)*(1+x^2)^{-\bruch{7}{2}} [/mm]

(ohne PC-Überprüfung, müsste also mal gegengerechnet werden...)

Die Frage ist, wie man allgemein für [mm] f^{(n)} [/mm] das Zählerpolynom bestimmt; das Nennerpolynom dürfte deutlich sein.
Andererseits brauchst Du ja nur den Wert der jeweiligen Ableitung an der Stelle x=0, vielleicht findest Du dadurch noch eine Vereinfachung?

lg,
reverend

Bezug
                
Bezug
Taylorreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Sa 10.01.2009
Autor: Mr._Calculus

Hey reverend,

danke erstmal für diesen Anfang. Die Ableitungen habe ich mir auch soweit berechnet, allerdings werden diese dann ziemlich schnell unschön. Wenn man die Werte einsetzt, erhält man 1,0,1,0,-3,0,45,0,-1575 (wenn ich mich nicht irre). Irgendwie auch keine befriedigende reihe um sie aufzustellen. Der Zähler hingegen, da hast du natürlich Recht, wird immer 1 ergeben.Würde mich freuen weitere Hinweise zum Aufstellen der Reihe zu bekommen.

Gruss Mr._Calculus

Bezug
                        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:46 Sa 10.01.2009
Autor: Event_Horizon

Hallo!

Ein Trick ist, eine zusammengesetzte Funktion auch aus den Taylorreihen der einzelnen Funktionen zusammenzusetzen.

Hier könntest du sagen, daß du [mm] $f\circ [/mm] g$ mit [mm] f(z)=\sqrt{1+z} [/mm] und [mm] g(x)=x^2 [/mm] hast. Die Taylorentwicklung von g ist einfach [mm] x^2, [/mm] du brauchst noch die von z.

Dazu hab ich das hier gefunden:
http://planetmath.org/?op=getobj&from=objects&id=7720

Man sieht, daß die Entwicklung von f nicht grade kurz ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]