Taylorreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe 1 | Entwickeln sie [mm] e^{-2x^{2}} [/mm] an der stelle x=0 in ein Taylorpolynom der sechsten Ordnung , verwenden sie dafür die reiche [mm] e^{x} [/mm] |
Aufgabe 2 | Entwickeln sie [mm] e^{x}sinx [/mm] an der stelle x=0 in ein Taylorpolynom der sechsten Ordnung , verwenden sie dafür die reiche [mm] e^{x} [/mm] und sinx |
wie ich das "normal" entwickle ist kein problem und ich komme auch auf das richtige Ergebnis. ich nehme aber an das die hinweise nicht umsonst sind und die sache auch leichter machen, verstehe ich aber nicht wie ich die reihen kombinieren kann..
über hinweise würde ich mich freuen!
besten Gruß!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo hannesmathe,
> Entwickeln sie [mm]e^{-2x^{2}}[/mm] an der stelle x=0 in ein
> Taylorpolynom der sechsten Ordnung , verwenden sie dafür
> die reiche [mm]e^{x}[/mm]
> Entwickeln sie [mm]e^{x}sinx[/mm] an der stelle x=0 in ein
> Taylorpolynom der sechsten Ordnung , verwenden sie dafür
> die reiche [mm]e^{x}[/mm] und sinx
> wie ich das "normal" entwickle ist kein problem und ich
> komme auch auf das richtige Ergebnis. ich nehme aber an das
> die hinweise nicht umsonst sind und die sache auch leichter
> machen, verstehe ich aber nicht wie ich die reihen
> kombinieren kann..
> über hinweise würde ich mich freuen!
Bei Aufgabe 1 verwendest Du die Reihe für [mm]e^{x}[/mm]
und setzt dann für x das Argument [mm]-2x^{2}[/mm] ein.
Bei Aufgabe 2 multiplizierst Du die Reihen für [mm]e^{x}[/mm] und [mm]\sin\left(x\right)[/mm].
> besten Gruß!
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
Gruss
MathePower
|
|
|
|
|
besten dank! das macht die sache um einiges entspannter!
|
|
|
|
|
Kleiner Tipp: Schreibe von beiden Reihen die ersten paar Glieder auf. Überlege dann, welche Multiplikations-Kombinationen nur eine Zahl ergeben (hier keine), welche einen Summanden mit x, dann mit [mm] x^2 [/mm] usw. ergeben. Du wirst feststellen, dass die höheren Glieder in den beiden Reihen tatsächlich keine Rolle spielen.
|
|
|
|