matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTaylorreihe bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Taylorreihe bestimmen
Taylorreihe bestimmen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:27 Mi 23.01.2013
Autor: miilkyway

Aufgabe
Bestimmen Sie für die nachfolgende Funktion die Taylor-Reihe und ihren Konvergenzradius (a [mm] \in \IR [/mm] konstant)

f(x) = [mm] \frac{e^{ax}}{1+\frac{x}{2}} [/mm]

Guten Morgen zusammen,

schon wieder ich und ein Reihen Problem :)

Ich bin mir unsicher wie ich vorgehen muss.

Mein erster Gedanke war, ableiten und dann Entwicklungspunkt einsetzen um zu sehen wie sich die Reihe entwickelt und dann auf die Taylorreihe zu schließen, aber ich hab ja gar keinen Entwicklungspunkt.
Gut, neuer Gedanke gesucht: die Taylorreihe für [mm] e^x [/mm] einsetzen unter beachtng von a natürlich.

Das würde dann ergeben:

[mm] e^{ax} [/mm] = [mm] \summe_{k=0}^{\infty} \frac{a^k*x^k}{k!} [/mm]

Aber was mach ich dann?

Vorgehen für Konvergenzradius ist mir bekannt, mir gehts hier jetzt hauptsächlich erst mal darum die Taylorreihe zu bestimmen.


Liebe Grüße
miilkyway

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:55 Mi 23.01.2013
Autor: fred97


> Bestimmen Sie für die nachfolgende Funktion die
> Taylor-Reihe und ihren Konvergenzradius (a [mm]\in \IR[/mm]
> konstant)
>  
> f(x) = [mm]\frac{e^{ax}}{1+\frac{x}{2}}[/mm]
>  Guten Morgen zusammen,
>  
> schon wieder ich und ein Reihen Problem :)
>  
> Ich bin mir unsicher wie ich vorgehen muss.
>  
> Mein erster Gedanke war, ableiten und dann
> Entwicklungspunkt einsetzen um zu sehen wie sich die Reihe
> entwickelt und dann auf die Taylorreihe zu schließen, aber
> ich hab ja gar keinen Entwicklungspunkt.
>  Gut, neuer Gedanke gesucht: die Taylorreihe für [mm]e^x[/mm]
> einsetzen unter beachtng von a natürlich.
>
> Das würde dann ergeben:
>  
> [mm]e^{ax}[/mm] = [mm]\summe_{k=0}^{\infty} \frac{a^k*x^k}{k!}[/mm]
>  
> Aber was mach ich dann?
>
> Vorgehen für Konvergenzradius ist mir bekannt, mir gehts
> hier jetzt hauptsächlich erst mal darum die Taylorreihe zu
> bestimmen.

Schreibe [mm] \bruch{1}{1+\bruch{x}{2}} [/mm] als geometrische Reihe und berechne mit dieser Reihe und [mm] \summe_{k=0}^{\infty} \frac{a^k*x^k}{k!} [/mm] das Cauchyprodukt.

FRED

>
>
> Liebe Grüße
>  miilkyway
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Taylorreihe bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:25 Mi 23.01.2013
Autor: miilkyway

Oh man eigentlich gar nicht so schwer, ich erkenn bloß immer nicht was ich machen muss!!

Danke für den Tipp, werd ich dann gleich mal berechnen!

Bezug
                        
Bezug
Taylorreihe bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Mi 23.01.2013
Autor: miilkyway

Ok, den Anfang bekomm ich hin, aber dann hackt es beim Cauchy Produkt wieder etwas


[mm] \summe_{k=0}^{\infty} \frac{a^k*x^k}{k!}*\summe_{k=0}^{\infty} \frac{x^k}{2^k} [/mm]

= [mm] \summe_{k=0}^{\infty} \summe_{j=0}^{k} \frac{a^j*x^j}{j!}*\frac{x^{k-j}}{2^{k-j}} [/mm]

= [mm] \summe_{k=0}^{\infty} \summe_{j=0}^{k} \frac{a^j*x^k}{j!*2^{k-j}} [/mm]

an dieser Stelle hab ich meistens meine Schwierigkeiten, weil ich dann immer nicht weiß wie es weiter geht.

Ich probier jetzt mal weiter so wie ich denk, aber bin mir absolut unsicher ob das so richtig ist

= [mm] \summe_{k=0}^{\infty} \frac{1}{k!} \summe_{j=0}^{k} \frac{k!}{j!*2^{k-j}}*a^j*x^k [/mm]

und ab dann weiß ich aber wirklich gar nicht mehr weiter!

Stimmt das was ich bisher gemacht hab überhaupt?
Wie mache ich denn dann weiter?


LG
miilkyway

Bezug
                                
Bezug
Taylorreihe bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Mi 23.01.2013
Autor: schachuzipus

Hallo miilkyway,


> Ok, den Anfang bekomm ich hin, aber dann hackt es beim
> Cauchy Produkt wieder etwas
>  
>
> [mm]\summe_{k=0}^{\infty} \frac{a^k*x^k}{k!}*\summe_{k=0}^{\infty} \frac{x^k}{2^k}[/mm]

Die hintere Reihe muss doch [mm] $\sum\limits_{k\ge 0}\left(\red -\frac{x}{2}\right)^k$ [/mm] sein, also in der Summe etwa [mm] $\frac{x^k}{(-2)^k}$ [/mm]

>
> = [mm]\summe_{k=0}^{\infty} \summe_{j=0}^{k} \frac{a^j*x^j}{j!}*\frac{x^{k-j}}{2^{k-j}}[/mm]
>  
> = [mm]\summe_{k=0}^{\infty} \summe_{j=0}^{k} \frac{a^j*x^k}{j!*2^{k-j}}[/mm]
>  
> an dieser Stelle hab ich meistens meine Schwierigkeiten,
> weil ich dann immer nicht weiß wie es weiter geht.
>  
> Ich probier jetzt mal weiter so wie ich denk, aber bin mir
> absolut unsicher ob das so richtig ist
>  
> = [mm]\summe_{k=0}^{\infty} \frac{1}{k!} \summe_{j=0}^{k} \frac{k!}{j!*2^{k-j}}*a^j*x^k[/mm]

Das ist sehr gut, schreibe nur statt der 2 eine -2

Nun, das [mm] $x^k$ [/mm] hängt nicht von j ab, das kannst du auch rausziehen, das [mm] $\frac{1}{(-2)^{k-j}}$ [/mm] kannst du schreiben als [mm] $\frac{(-2)^j}{(-2)^k}$. [/mm]

Da kannst du [mm] $\frac{1}{(-2)^k}$ [/mm] auch noch rausziehen ...

>  
> und ab dann weiß ich aber wirklich gar nicht mehr weiter!
>  
> Stimmt das was ich bisher gemacht hab überhaupt?
>  Wie mache ich denn dann weiter?
>  
>
> LG
>  miilkyway

Gruß

schachuzipus


Bezug
                                        
Bezug
Taylorreihe bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:03 Mi 23.01.2013
Autor: miilkyway


>  >  
> > = [mm]\summe_{k=0}^{\infty} \frac{1}{k!} \summe_{j=0}^{k} \frac{k!}{j!*2^{k-j}}*a^j*x^k[/mm]
>
> Das ist sehr gut, schreibe nur statt der 2 eine -2

oh ja klar, dummer Leichtsinnsfehler!


>  
> Nun, das [mm]x^k[/mm] hängt nicht von j ab, das kannst du auch
> rausziehen, das [mm]\frac{1}{(-2)^{k-j}}[/mm] kannst du schreiben
> als [mm]\frac{(-2)^j}{(-2)^k}[/mm].
>  
> Da kannst du [mm]\frac{1}{(-2)^k}[/mm] auch noch rausziehen ...


ok, also dann bekomm ich:

[mm] \summe_{k=0}^{\infty} \frac{1}{k!}*x^k\summe_{j=0}^{k} \frac{k!}{j!}*\frac{(-2)^j}{(-2)^k}*a^j* [/mm]

= [mm] \summe_{k=0}^{\infty} x^k*\frac{1}{k!}*\frac{1}{(-2)^k}*\summe_{j=0}^{k}\frac{k!}{j!}*(-2)^j*a^j [/mm]

ich bin mir jetzt nicht sicher, aber ich hab ne aufgabe, auch cauchy produkt, da wird dann an der Stelle (also nachdem so aufgeteilt wurde das man alles was nicht von j abhängt rauszieht) alles mit "j" verschwindet (?)
Kann das sein? Oder was passiert jetzt? :)

LG
miilkyway

Bezug
                                                
Bezug
Taylorreihe bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Sa 26.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]