matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorreihe, ersten drei Glied
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Taylorreihe, ersten drei Glied
Taylorreihe, ersten drei Glied < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe, ersten drei Glied: Tipps,Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 22:04 Di 04.01.2011
Autor: Karlomon

Aufgabe
Berechnen Sie die ersten drei Glieder (quadratische Näherung) der taylorreihe zur Funktion y(x)=1/cos(x) im Entwicklungspunkt [mm] x_{0}=0 [/mm]

Folgendes hab ich gemacht, ist das richtig oder fehlt da was?und wenn ja was und wie?


y(x)=1/cos(x)=y(0)=1/cos(0)=1

Y{|}=-cos(x)*-sin(x)

y{||}=sin(x)*-sin(x)+(-cos(x)*-cos(x))

y{|}->f{|}(0)=-cos(0)*-sin(0)=0
y{||}=sin(0)*-sin(0)+(-cos(0)*-cos(0))=1

[mm] 1/cos(x)=1+\bruch{0}{1!}(x-0)+\bruch{1}{2!}(x-0)^{2}-+... [/mm]
[mm] =1+\bruch{(x-0)^2}{2!}-+...=\summe_{n=0}^{infty}\bruch{f^{n}(0)}{n!}*(x-0)^n [/mm]

ist das auch so richtig oder fehlt da etwas?
danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorreihe, ersten drei Glied: Ableitungen falsch
Status: (Antwort) fertig Status 
Datum: 22:14 Di 04.01.2011
Autor: Loddar

Hallo Karlomon,

[willkommenmr] !!


Leider stimmen Deine Ableitungen nicht. Wie hast Du die erste Ableitung berechnet?
Anschließend musst Du dann auch jeweils die MBQuotientenregel anwenden.


Gruß
Loddar


Bezug
                
Bezug
Taylorreihe, ersten drei Glied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Di 04.01.2011
Autor: Karlomon

meine ableitung war wie folgt:

y{|}=cos(x)^-1

g=(h(x))
y=(h(x)=cos(x)
g(y)=y^-1
H{|}(x)=-sin(x) g{|}=-1y //ich glaub da ist der fehler!!

müsste -1y^-2

dann müsste die erste ableitung:
[mm] -cos(x)^{-2}*-sin(x) [/mm]

somit würde sich für die 2te nach der produktregel

[mm] (-2*-sin(x)^{-3}*-sin(x))+(-cos(x)^{-2}*-cos(x)) [/mm]

also:

[mm] 2*\bruch{3}{sin(x)}+(-\bruch{2}{cos(x)}*-cos(x)) [/mm]

aber, wenn ich die ableitungen dann richtig habe, ist der rest des lösungsweg der aufgabe richtig?

Bezug
                        
Bezug
Taylorreihe, ersten drei Glied: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Di 04.01.2011
Autor: ullim

Hi,

> meine ableitung war wie folgt:
>  
> y{|}=cos(x)^-1

Was meinst Du eigentlich mit diesem Ausdruck {|}, vielleicht [mm] y(x)=\br{1}{cos(x)}? [/mm]

> g=(h(x))
>  y=(h(x)=cos(x)
>  g(y)=y^-1
>  H{|}(x)=-sin(x) g{|}=-1y //ich glaub da ist der fehler!!

Was soll H(x) für eine Funktion sein?

> müsste -1y^-2

Was soll [mm] -1*y^{-2} [/mm] bedeuten? Die Benutzung des Formeleditors macht manches leichter!

> dann müsste die erste ableitung:
>  [mm]-cos(x)^{-2}*-sin(x)[/mm]

die Minuszeichen kann man kürzen, dann stimmt es.

> somit würde sich für die 2te nach der produktregel
>  
> [mm](-2*-sin(x)^{-3}*-sin(x))+(-cos(x)^{-2}*-cos(x))[/mm]
>  
> also:
>  
> [mm]2*\bruch{3}{sin(x)}+(-\bruch{2}{cos(x)}*-cos(x))[/mm]

Nimm doch einfach die Quotientenregel mit

u(x)=sin(x) und [mm] v=cos(x)^2 [/mm]

u'(x)=cos(x) v'(x)=-2*cos(x)*sin(x) und dann alles einsetzen.

Dann ist die zweite Ableitung [mm] \br{u'(x)*v(x)-u(x)*v'(x)}{v(x)^2} [/mm]


> aber, wenn ich die ableitungen dann richtig habe, ist der
> rest des lösungsweg der aufgabe richtig?

Die Taylorreihe bis zum dritten Glied lautet

[mm] f(x)=f(0)+f'(0)*x+\br{1}{2}*f''(0)*x^2+Restglied [/mm]

f(0)=1

f'(0)=0

f''(0)=1

und jetzt alles einsetzen und richtig (mit Formeleditor!) aufschreiben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]