matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorreihe und Restglied
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Taylorreihe und Restglied
Taylorreihe und Restglied < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe und Restglied: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Di 30.01.2007
Autor: GorkyPark

Aufgabe
Berechne sin(0.5) mit einem Fehler kleiner als [mm] 10^{-10} [/mm]

Hallo miteinander!

Ich soll sin(0.5) approximieren und das mittels Taylor-Reihe oder/ und Restglied.

Ich bin noch sehr ungeschickt im Umgang mit Taylor-Reihen, also habe ich mir mal den ganzen Morgen Informationen dazu gesucht. Ich habe mal diese Aufgabe mit Mathematica mit der Sinus-Formel so ausgerechnet:

[mm] \summe_{n=0}^{\infty}(-1)^{n}*\bruch{0.5^(2n+1)}{(2n+1)!}- \summe_{n=0}^{m}(-1)^{n}*\bruch{0.5^(2n+1)}{(2n+1)!}<10^{-10}. [/mm]

Das gilt ab n=4. Das ist aber sicherlich nicht der Sinn der Aufgabe, oder? Ich  habe dann mal versucht die Taylorreihe von sin(0) und sin(0.5) zu bilden. sin(0) war einfach, aber bei sin(0.5), habe ich das folgende Problem:

f'(0.5)=cos(0.5)
f''(0.5)=-sin(0.5)
f"'(0.5)=-cos(0.5)
f""(0.5)=sin(0.5)

usw.

Das hilft mir aber keine Spur weiter, da ich ja die Werte von sin(0.5) und cos(0.5) ja nicht kenne. Ich suche sie ja!

Kann mir jemand eine Hilfe geben? Ich soll diese Aufgabe mit dem Restglied berechnen. Restglied= f(x)-Taylorformel.

Vielen Dank!!!

Euer,

Gork's!

        
Bezug
Taylorreihe und Restglied: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Mi 31.01.2007
Autor: ullim

Hi,

Du kannst die Lagrange Form des Restgliedes für Taylorreihen benutzen.

[mm] \br{f^{(n+1)}(a)}{(n+1)!}(x-x_0)^{n+1} [/mm]

a ist ein Wert zwischen x und [mm] x_0 [/mm] und [mm] x_0 [/mm] ist der Entwicklungspunkt der Taylorreihe, hier ist [mm] x_0=0. [/mm]

Im Restglied muss n so groß gewählt werden, das die geforderte Genauigkeit von [mm] 10^{-10} [/mm] erreicht wird.

Da alle Ableitungen von sin entweder wieder eine Sinus- oder Cosinusfunktion ergeben, kann der Term [mm] |f^{(n+1)}(a)| [/mm] mit 1 abgeschätzt werden.

Also ist nur noch [mm] |\br{1}{(n+1)!}(x-x_0)^{n+1}| [/mm] zu betrachten

Macht man das, kommt man wie von  Dir angegeben auf N=4.

mfg ullim

Bezug
                
Bezug
Taylorreihe und Restglied: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 Mi 31.01.2007
Autor: GorkyPark

Danke vielmals für die Antwort.

Ich hatte es gestern Nachmittag selber gelöst und hab vergessen die Frage auf dem Forum zu streichen. Ich bin nämlich genau auf den gleichen Lösungsweg gekommen wie du vorgeschlagen hast, war mir aber nicht sicher. :D
Jetzt habe ich die Bestätigung! Danke und tschüss!

GorkyPark

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]