matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTaylorreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Taylorreihen
Taylorreihen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihen: Restgliedbestimmung
Status: (Frage) überfällig Status 
Datum: 11:22 Sa 01.07.2006
Autor: RalU

Aufgabe
Sei f: x-> [mm] x^{2}+cos(1-x) [/mm]
a) Entwickeln Sie f in eine Taylorreihe an der Stelle [mm] x=\pi/4 [/mm] bis zum Glied zweiter Ordnung.
b) Schätzen Sie das Restglied für [mm] x=\pi/3 [/mm] ab, d.h. [mm] R3(\pi/3). [/mm]

Teil a) hab ich folgendermaßen gelöst:

f'(x)=2x-sin(1-x)*(-1) = 2x+sin(1-x)
f''(x)=2+cos(1-x)*(-1)=2-cos(1-x)
f'''(x)=sin(1-x)*(-1)=-sin(1-x)

[mm] f(\pi/4)=\pi/4^{2}+cos(1-\pi/4)=\pi^{2}/16+cos(1-\pi/4) [/mm]
[mm] f'(\pi/4)=2*\pi/4+sin(1-\pi/4)=\pi/2+sin(1-\pi/4) [/mm]
[mm] f''(\pi/4)=2-cos(1-\pi/4) [/mm]

[mm] p(x)=(f^{0}(\pi/4)/0!)*(x-\pi/4)^{0}+(f'(\pi/4)/1!)*(x-\pi/4)^{1}+(f''(\pi/4)/2!)*(x-\pi/4)^{2}+...= [/mm]
[mm] =(\pi^{2}/16+cos(1-\pi/4)+(\pi/2+sin(1-\pi/4))*(x-\pi/4)+(2-cos(1-\pi/4)/2)*(x-\pi/4)^{2} [/mm]

Ist das soweit in Ordnung? Gibt es eine Möglichkeit das alles in Summen-Schreibweise darzustellen, ohne einen Taschenrechner zu benutzen(vgl. Problematik sin/und cos-Werte)?

für Teil b) würde ich folgendermaßen beginnen:
Formel für Restglied:
[mm] ((f^{k+1}(\psi))/(k+1)!)*(x-entwpkt)^{k+1} [/mm]
also:
[mm] (f'''(\psi)/3!)*(x-\pi/3)^{3} [/mm]

Die Gesamtlösung für b) ist dann a) + das Restglied.
Aber wie komme ich zu meinem [mm] \psi? [/mm] Bzw. was muss man da abschätzen? Wie geht man da vor?
Vielen Dank für Eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Taylorreihen: Überfälligkeit egal
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:32 So 02.07.2006
Autor: RalU

Weiß denn niemand eine Antwort auf meine Fragen? (Ok, is zwar Sonntag und das Fälligkeitsdatum is abgelaufen). Is aber egal. Bin für jeden Hinweis dankbar!!!

Bezug
        
Bezug
Taylorreihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 05.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]