matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Taylorreihen
Taylorreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Mo 06.08.2007
Autor: polyurie

Aufgabe
Berechnen Sie die Reihenentwickllung mit Entwicklungspunkt [mm] x_{0}=0 [/mm] der Funktion [mm] f_{x}=\bruch{5x}{6x^{2}-x-1}, [/mm] indem Sie zunächst eine Partialbruchzerlegung durchführen.

Hi,

   hab mit dem letzten Teil der Aufgabe Probleme. Das hab ich bisher gemacht:

Partialbruchzerlegung:

[mm] f_{x}=\bruch{5x}{6x^{2}-x-1}=\bruch{5x}{(3x+1)(2x-1)}=\bruch{A}{3x+1}+\bruch{B}{2x-1}=\bruch{A(2x-1)+B(3x+1)}{6x^{2}-x-1} [/mm]

Koeffizientenvergleich:

2A + 3B =5
-A + B = 0

A=B=1

So, und weiter komme ich nicht. In der Musterlösung steht folgendes (versteh ich aber nicht):

[mm] f_{x}=\bruch{1}{1-(-3x)}-\bruch{1}{1-(2x)}=\summe_{k=0}^{\infty}(-3x)^{k}-\summe_{k=0}^{\infty}(2x)^{k}=\summe_{k=0}^{\infty}[(-3x)^{k}-2^{k}]*x^{k} [/mm]

Die Reihenentwicklung stellt die Funktion dar für: [mm] |x|<\bruch{1}{3} [/mm]

Es wäre super wenn mir jemand den letzten Teil der Aufgabe erklären könnte. Danke!!

MfG
Stefan

        
Bezug
Taylorreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Mo 06.08.2007
Autor: leduart

Hallo
offensichtlich hast du Mühe mit der geometrischen Reihe!
Die stellt aber bei Reihen eigentlich das wichtigste Werkzeug dar!
Es [mm] gilt:\summe_{i=1}^{n}q^i=\bruch{1-q^{n+1}}{1-q} [/mm]
und damit für q<1
[mm] \summe_{i=1}^{\infty}=\bruch{1}{1-q} [/mm]
Das habt ihr sicher gehabt.
Nun kann man für q irgendwas einsetzen, links oder und rechts. also [mm] q=x^2 [/mm] oder q=(-3x) oder q=2x usw oder q=17*Stefan usw. Dan folgt z. Bsp im letzen Fall:
[mm] \bruch{1}{1-17*Stefan}=\summe_{i=1}^{\infty}17^i*Stefan^i [/mm]
für 17Stefan<1!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]