matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieTeilbarkeit. Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Teilbarkeit. Beweis
Teilbarkeit. Beweis < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit. Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:12 Mi 19.10.2011
Autor: Ferma

Hallo,
wie kann man beweisen, dass der Ausdruck
(66^777)-1 restlos durch 13 teilbar ist?
Mein Ansatz: Zunächst den Beweis erstellen, dass der Ausdruck durch 1001 restlos teilbar ist. Kann mir jemand helfen? Der Beweis soll ganz einfach sein.
Gruß, Ferma


        
Bezug
Teilbarkeit. Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Mi 19.10.2011
Autor: felixf

Moin Ferma!

>  wie kann man beweisen, dass der Ausdruck
>  (66^777)-1 restlos durch 13 teilbar ist?
>  Mein Ansatz: Zunächst den Beweis erstellen, dass der
> Ausdruck durch 1001 restlos teilbar ist. Kann mir jemand
> helfen? Der Beweis soll ganz einfach sein.

Es ist $66 = 5 [mm] \cdot [/mm] 13 + 1$. Da steht also $(1 + 5 [mm] \cdot 13)^{777} [/mm] - 1$. Wenn du jetzt die binomische Formel anwendest, siehst du, dass jeder Term durch 13 teilbar ist (der Term in $(1 + 5 [mm] \cdot 13)^{777}$ [/mm] der es nicht ist ist 1, und wird von der -1 weggemacht).

Wenn du Modulo-Rechnung verwenden darfst: [mm] $66^{777} [/mm] - 1 [mm] \equiv 1^{777} [/mm] - 1 [mm] \equiv [/mm] 1 - 1 [mm] \equiv [/mm] 0 [mm] \pmod{13}$. [/mm]

LG Felix


Bezug
                
Bezug
Teilbarkeit. Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Mi 19.10.2011
Autor: Ferma

wie sieht es aus mit:( 77^666)-1
das ist auch restlos teilbar durch 13. Hier gilt 77=6*13-1
Bitte erkläre mir das mit der Modulo-Rechnung. Wie liest man deinen letzten Ausdruck in Worten? wieso gilt: 66^777 identisch 1^777?
VG Ferma

Bezug
                        
Bezug
Teilbarkeit. Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Mi 19.10.2011
Autor: leduart

Hallo
weisst du was "modulo" Rechnung ist? also etwa was 66 mod 13 ist dann erklär wie du a=2mod 13 , b=3mod 13 a*b=? mod 13 rechnest.
vielleicht kennst du es besser unter der Bezeichnung Restklassen . etwa [mm] \IZ_{13} [/mm]
Wenn du solche aufgaben bearbeitest  solltest du das doch gehabt haben?
Gruss leduart


Bezug
                        
Bezug
Teilbarkeit. Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mi 19.10.2011
Autor: felixf

Moin!

> wie sieht es aus mit:( 77^666)-1
>  das ist auch restlos teilbar durch 13. Hier gilt
> 77=6*13-1

Wieder mit dem binomischen Lehrsatz kannst du [mm] $77^{666} [/mm] = (-1 + [mm] 6\cdot13)^{666}$ [/mm] schreiben als [mm] $(-1)^{666} [/mm] + 13 [mm] \cdot [/mm] X$ mit irgendeiner ganzen Zahl $X$. Nun ist [mm] $(-1)^{666}$ [/mm] wieder gleich 1, womit [mm] $77^{777} [/mm] - 1 = 1 + 13 [mm] \cdot [/mm] X - 1$ durch 13 teilbar ist.

Du kannst uebrigens 666 durch irgendeine andere gerade ganze Zahl ersetzen... Und die 777 bei [mm] $66^{777} [/mm] - 1$ durch jede beliebige ganze Zahl.

>  Bitte erkläre mir das mit der Modulo-Rechnung. Wie liest
> man deinen letzten Ausdruck in Worten? wieso gilt: 66^777
> identisch 1^777?

Das "identisch" ist Teil der Modulo-Schreibweise: man schreibt $a [mm] \equiv [/mm] b [mm] \pmod{c}$ [/mm] genau dann, wenn $c$ ein Teiler von $b - a$ ist.

LG Felix


Bezug
                                
Bezug
Teilbarkeit. Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:57 Do 20.10.2011
Autor: Ferma

Hallo Felix,
danke für die kompetente und verständliche Hilfe.
Viele Grüße
Ferma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]