matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieTeilbarkeit beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Teilbarkeit beweisen
Teilbarkeit beweisen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 So 09.12.2012
Autor: Neongelb

Aufgabe
Seien x,y [mm] \in \IZ [/mm] beliebig. Zeigen Sie:

1. y | x [mm] \Rightarrow [/mm] |y| | x, y | |x| und |y| |x|

Hi,
tut mir leid aber irgendwie sieht das so einfach aus, dass ich schon wieder nicht mehr weiss wie ich das zeigen soll.

Meine Lösung:
    Es gilt: x = k [mm] \* [/mm] y für k [mm] \in \IZ [/mm]
           [mm] \equiv [/mm] x = -k [mm] \* [/mm] -y
           [mm] \equiv [/mm] -x = -k [mm] \* [/mm] y
           [mm] \equiv [/mm] -x = k [mm] \* [/mm] -y

Kann man das so machen?

Danke schonmal,
Grüße    




        
Bezug
Teilbarkeit beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:03 Mo 10.12.2012
Autor: reverend

Hallo Neongelb,

> Seien x,y [mm]\in \IZ[/mm] beliebig. Zeigen Sie:
>  
> 1. y | x [mm]\Rightarrow[/mm] |y| | x, y | |x| und |y| |x|
>  Hi,
>  tut mir leid aber irgendwie sieht das so einfach aus, dass
> ich schon wieder nicht mehr weiss wie ich das zeigen soll.
>  
> Meine Lösung:
>      Es gilt: x = k [mm]\*[/mm] y für k [mm]\in \IZ[/mm]
>             [mm]\equiv[/mm]
> x = -k [mm]\*[/mm] -y
>             [mm]\equiv[/mm] -x = -k [mm]\*[/mm] y
>             [mm]\equiv[/mm] -x = k [mm]\*[/mm] -y
>  
> Kann man das so machen?

Ja, das sieht gut aus. Noch verständlicher wäre es aber, wenn Du den Faktor -1 einführen würdest. Das ist etwas mehr Schreibarbeit, aber unanfechtbar.

Grüße
reverend


Bezug
                
Bezug
Teilbarkeit beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 Mo 10.12.2012
Autor: Neongelb

Alles klar :-). Vielen Dank.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]