matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikTeilbarkeit beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Logik" - Teilbarkeit beweisen
Teilbarkeit beweisen < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 Mi 27.11.2013
Autor: pc_doctor

"Wenn (mindestens) eine von zwei ganzen Zahlen n und m nicht durch 3 teilbar, dann ist auch die Summe oder die Differenz von n und m nicht durch 3 teilbar."

Hallo , ich soll diese Aussage mittels Kontraposition beweisen.

Also die Aussage beziehe ich auf die Logik und sage:
a -> b ( a impliziert b )

die Kontraposition ist [mm] \neg [/mm] b [mm] ->\neg [/mm] a

Also wenn die Summe oder die Differenz von n und m durch 3 teilbar ist , dann ist mindestens eine von zwei ganzen Zahlen n und m durch 3 teilbar.

Also sei die Summe von n und m:

[mm] \bruch{n+m}{3} [/mm]  , das kann ich anders aufschreiben:
[mm] \bruch{n}{3} [/mm] + [mm] \bruch{m}{3} [/mm]

Ich bin mir ziemlich sicher , dass das zu trivial ist , was ich gemacht habe , aber damit habe ich doch gezeigt , dass mindestens n und m durch 2 teilbar ist , indem ich die Summe anders , aber semantisch äquivalent aufgeschrieben habe.

Wenn das zu einfach ist , was ist dann der richtige Weg ?


Danke im Voraus.


        
Bezug
Teilbarkeit beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Mi 27.11.2013
Autor: wieschoo

Du hast "mindestens eine" falsch negiert.

Die ursprüngliche Aussage mit den Bezeichnung
[mm]z_1[/mm] Zahl 1 ist durch 3 teilbar
[mm]z_2[/mm] Zahl 2 ist durch 3 teilbar
[mm]s[/mm] Summe ist durch 3 teilbar
ist

[mm]\neg z_1 \vee \neg z_2 \quad\rightarrow\quad \neg s[/mm]  !

Wende jetzt Kontraposition auf den Ausdruck an.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]