matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieTeiler von 14^16 - 5^16
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Teiler von 14^16 - 5^16
Teiler von 14^16 - 5^16 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teiler von 14^16 - 5^16: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Mi 11.07.2018
Autor: mathelernender

Aufgabe
Finde explizit 8 natürliche Zahlen, die Teiler von [mm] 14^{16} [/mm] - [mm] 5^{16} [/mm] sind.


Hallo zusammen,

ich bearbeite z.Z. die o.g. Aufgabe und tu mich etwas schwer damit. Das explizite Ausrechnen der Zahl ist sicherlich nicht zielführend, da diese sehr groß ist.

Mein erster Ansatz war es zunächst, die Differenz modulo 2,...,9 zu betrachten. Das ist nicht riesig aufwendig, allerdings finden sich so nur 3 und 9 als Teiler. Natürlich könnte ich jetzt noch weiter rumprobieren mit größeren modulen. Das scheint mir aber etwas unsystematisch zu sein. Ich könnte natürlich auch nur die module betrachten, die Primzahlen sind. Jede Zahl lässt sich durch eine PFZ darstellen. Dann könnte ich z.B. auch Primzahlquadrate noch untersuchen usw. bis ich irgendwann meine 8 Teiler zusammen habe.

Hat jemand eventuell eine Idee, wie man das etwas zielführender gestalten kann?

Viele Grüße,
mathelernender

        
Bezug
Teiler von 14^16 - 5^16: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mi 11.07.2018
Autor: Diophant

Hallo,

> Finde explizit 8 natürliche Zahlen, die Teiler von [mm]14^{16}[/mm]
> - [mm]5^{16}[/mm] sind.

>

> Hallo zusammen,

>

> ich bearbeite z.Z. die o.g. Aufgabe und tu mich etwas
> schwer damit. Das explizite Ausrechnen der Zahl ist
> sicherlich nicht zielführend, da diese sehr groß ist.

>

> Mein erster Ansatz war es zunächst, die Differenz modulo
> 2,...,9 zu betrachten. Das ist nicht riesig aufwendig,
> allerdings finden sich so nur 3 und 9 als Teiler.
> Natürlich könnte ich jetzt noch weiter rumprobieren mit
> größeren modulen. Das scheint mir aber etwas
> unsystematisch zu sein. Ich könnte natürlich auch nur die
> module betrachten, die Primzahlen sind. Jede Zahl lässt
> sich durch eine PFZ darstellen. Dann könnte ich z.B. auch
> Primzahlquadrate noch untersuchen usw. bis ich irgendwann
> meine 8 Teiler zusammen habe.

>

> Hat jemand eventuell eine Idee, wie man das etwas
> zielführender gestalten kann?

Lasse einmal die dritte binomische Formel auf den Term los...


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]