matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperTeilmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Teilmenge
Teilmenge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Do 11.10.2012
Autor: unibasel

Aufgabe
Sei Q [mm] \in \IR^{2} [/mm] ein Quadrat der Seitenlänge a, und sei [mm] \epsilon>0. [/mm] Weiter sei M eine Teilmenge von Q, mit der Eigenschaft, dass der Abstand zwischen je zwei Punkten von M stets [mm] \ge \epsilon. [/mm] Man fnde eine explizite obere Schranke für die Anzahl der Elemente von M.

Ich habe null Vorstellung, wie ich diese Aufgabe lösen soll.

Nun ein Element b [mm] \in \IQ [/mm] heisst obere Schranke von M, wenn x
[mm] \le [/mm] b für alle x [mm] \in [/mm] M...

Wie soll ich das mit dem Quadrat in Verbindung bringen und allgemein was es mit dem Thema Untergruppen, Nebenklassen und Isomorphismus zu tun hat, ist mir unklar.

Wäre froh, wenn es mir jemand erklären könnte.
Danke und mfg :)



        
Bezug
Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 11.10.2012
Autor: Al-Chwarizmi


> Sei Q [mm]\in \IR^{2}[/mm] ein Quadrat der Seitenlänge a, und sei
> [mm]\epsilon>0.[/mm] Weiter sei M eine Teilmenge von Q, mit der
> Eigenschaft, dass der Abstand zwischen je zwei Punkten von
> M stets [mm]\ge \epsilon.[/mm] Man finde eine explizite obere
> Schranke für die Anzahl der Elemente von M.
>  Ich habe null Vorstellung, wie ich diese Aufgabe lösen
> soll.
>  
> Nun ein Element b [mm]\in \IQ[/mm] heisst obere Schranke von M, wenn
> x
> [mm]\le[/mm] b für alle x [mm]\in[/mm] M...
>  
> Wie soll ich das mit dem Quadrat in Verbindung bringen und
> allgemein was es mit dem Thema Untergruppen, Nebenklassen
> und Isomorphismus zu tun hat, ist mir unklar.


Hallo,

diese Aufgabe hat kaum viel mit Gruppentheorie etc. zu
tun, aber wohl mit Elementargeometrie. Ist P ein Element
von M, so kann es im Inneren des Kreises um P mit
Radius [mm] \epsilon [/mm] keine weiteren Punkte von M geben.
Da der Flächeninhalt von Q endlich ist, kann es deshalb
in M auch nur endlich viele Punkte geben.
Um zu einer oberen Schranke für die Anzahl der Elemente
von M zu kommen, kannst du z.B. das Quadrat Q in Teil-
quadrate einer geeigneten Seitenlänge zerlegen mit der
Eigenschaft, dass jedes dieser Teilquadrate höchstens
einen Punkt von M enthalten kann.
Wenn du ganz ehrgeizig bist und die kleinste obere
schranke ermitteln möchtest, dann wird es deutlich
schwieriger, denn du müsstest dich dann mit Kreis-
packungen in der Ebene beschäftigen.

LG    Al-Chwarizmi  

Bezug
                
Bezug
Teilmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Fr 12.10.2012
Autor: felixf

Moin,

> diese Aufgabe hat kaum viel mit Gruppentheorie etc. zu
>  tun, aber wohl mit Elementargeometrie. Ist P ein Element
> von M, so kann es im Inneren des Kreises um P mit
>  Radius [mm]\epsilon[/mm] keine weiteren Punkte von M geben.
>  Da der Flächeninhalt von Q endlich ist, kann es deshalb
>  in M auch nur endlich viele Punkte geben.
>  Um zu einer oberen Schranke für die Anzahl der Elemente
>  von M zu kommen, kannst du z.B. das Quadrat Q in Teil-
>  quadrate einer geeigneten Seitenlänge zerlegen mit der
>  Eigenschaft, dass jedes dieser Teilquadrate höchstens
>  einen Punkt von M enthalten kann.

alternativ kann man auch einen Kreis um jeden Punkt legen mit einem Radius, so dass sich zwei solche Kreise nicht schneiden. Dann ist die Summe der Kreisflaecheninhalte kleiner als der Flaecheninhalt eines etwas vergroesserten Quadrates. Damit bekommt man eine obere Schranke fuer die Anzahl der Elemente im Kreis.

>  Wenn du ganz ehrgeizig bist und die kleinste obere
>  schranke ermitteln möchtest, dann wird es deutlich
>  schwieriger, denn du müsstest dich dann mit Kreis-
>  packungen in der Ebene beschäftigen.

Das ist aber wirklich ein sehr schweres Problem :)

LG Felix


Bezug
                        
Bezug
Teilmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Fr 12.10.2012
Autor: Al-Chwarizmi


> alternativ kann man auch einen Kreis um jeden Punkt legen
> mit einem Radius, so dass sich zwei solche Kreise nicht
> schneiden. Dann ist die Summe der Kreisflaecheninhalte
> kleiner als der Flaecheninhalt eines etwas vergroesserten
> Quadrates. Damit bekommt man eine obere Schranke fuer die
> Anzahl der Elemente im Kreis.

Natürlich - dies ist ja auch die erste Idee zur Lösung hin.
Ich habe Quadrate vorgeschlagen, weil damit die Rechnung
noch einfacher wird.

LG,   Al


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]