matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesTeilräume: Dimension und Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Teilräume: Dimension und Basis
Teilräume: Dimension und Basis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilräume: Dimension und Basis: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:12 Sa 12.03.2011
Autor: H.T.S.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Welche dimension hat U:= Lin [ \vektor{2\\ -1 \\ 0}, \vektor{-1 \\ 0\\1}]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

in der Musterlösung wird gesagt dass die dim = 2 ist.
Meiner Überlegung nach müsste doch dim = 3 sein, da es heißt:

dim \IR^n = n (Basis: {einheitsvektor 1, ... einheitsvektor n))

Im vorliegenden Fall hat man doch eine x - ,y- , und z-Komponente, dementsprechend die einheits vektoren \vektor{1\\0\\0} etc.

Warum ist meine Überlegung denn falsch?
Danke im Voraus

        
Bezug
Teilräume: Dimension und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Sa 12.03.2011
Autor: Lippel

Hallo,

> Welche dimension hat $U:= Lin [ [mm] \vektor{2\\ -1 \\ 0}, \vektor{-1 \\ 0\\1}]$ [/mm]

>  
> in der Musterlösung wird gesagt dass die dim U= 2 ist.
> Meiner Überlegung nach müsste doch dim [red]U[/mm]= 3 sein, da es
> heißt:
>  
> dim [mm] \IR^n [/mm] = n (Basis: (einheitsvektor 1, ... einheitsvektor
> n))
>  
> Im vorliegenden Fall hat man doch eine x - ,y- , und
> z-Komponente, dementsprechend die einheits vektoren
> [mm] \vektor{1\\0\\0} [/mm] etc.
>  
> Warum ist meine Überlegung denn falsch?

$U:= Lin ( [mm] \vektor{2\\ -1 \\ 0}, \vektor{-1 \\ 0\\1})$ [/mm] ist ein Untervektorraum des [mm] $\IR^3$, [/mm] nicht der ganze [mm] $\IR^3$. [/mm] Es liegt zum Beispiel der Vektor [mm] $\vektor{1 \\ 0 \\ 0}$ [/mm] nicht in [mm] $U\:$. [/mm] Du kannst ja mal versuchen ihn aus [mm] $\vektor{2\\ -1 \\ 0}$ [/mm] und [mm] $\vektor{-1 \\ 0\\1})$ [/mm] linear zu kombinieren. Das wird dir nicht gelingen.
[mm] $U\:$ [/mm] kann auch gar nicht der [mm] $\IR^3$ [/mm] sein. Denn ein Untervektorraum, der von zwei Vektoren aufgespannt wird, hat maximal die Dimension 2, denn die zwei Vektoren sind ja ein Erzeugendensystem.
Du weißt nun also schon einmal, dass die Dimension [mm] $\leq [/mm] 2$ ist. Sie ist genau 2, da die beiden Vektoren, von denen die lineare Hülle gebildet wird, linear unabhängig sind. (Kannst du das zeigen?) Damit bilden die beiden Vektoren eine Basis des Untervektorraums [mm] $U\:$. [/mm]
Nochmal anschaulich: Die beiden Vektoren spannen eine Ebene im 3-dim. Raum auf. Die Ebene ist ein zweidimensionaler Unterraum.

LG Lippel



Bezug
                
Bezug
Teilräume: Dimension und Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Sa 12.03.2011
Autor: H.T.S.

achso jetzt verstehe ich das.... man muss dafür erstmal so en gewisses gefühl entwickeln... das mit der linearen unabhängigkeit ist nicht so das problem man müsste dann grad sagen [mm] \vec{a}=\lambda\vec{a} [/mm] und ein passendes [mm] \lambda [/mm] finden... joa des passt..
zusammenfassung:
zwei vektoren also mindestens dim [mm] \le [/mm] 2 und da die beiden vektoren unabhängig sind isses auch dim = 2 und da es sich um untervektorräume handelt ist so sagen dass es sich um eine ebene handelt zwar im [mm] \IR^3 [/mm] aber die ebene halt nur die zweidimensional ist.. deshalb dim = 2
cool cool
nochmals herzlichen dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]