matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraTeilraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Teilraum
Teilraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilraum: Ansatz
Status: (Frage) beantwortet Status 
Datum: 18:20 Do 29.11.2007
Autor: xcase

Aufgabe
Entscheiden sie bei folgender Menge ob es sich um einen Teilraum im [mm] \IR^{2,2} [/mm] handelt:

[mm] T_{1}:= \{\pmat{ a & b \\ c & d } \varepsilon \IR^{2,2} | a*b*c*d = 0\} [/mm] .

Dann muss ich ja ueberpruefen:
(i) [mm] T_{1} \not=0 [/mm]
(ii) Fuer [mm] A_{1},A_{2} \varepsilon T_{1} [/mm] bel. -> [mm] A_{1}+A_{2} \varepsilon T_{1} [/mm]
(iii) Fuer [mm] A_{1}+A_{2} \varepsilon T_{1} [/mm] bel. und [mm] \lambda \varepsilon \IR [/mm] -> [mm] \lambda [/mm] * A [mm] \varepsilon T_{1} [/mm] .

Mein Ansatz:
[mm] T_{1}= \{\pmat{ a & b \\ c & 0 },\pmat{ a & b \\ 0 & d },\pmat{ a & 0 \\ c & d },\pmat{ 0 & b \\ c & d } | a,b,c,d \varepsilon \IR \} [/mm] .
zu (i): z.b. [mm] \pmat{ 0 & 0 \\ 0 & 0 } \varepsilon T_{1} \Rightarrow T_{1} \not=0 [/mm]

zu (ii): Seien [mm] A_{1}=\pmat{ a_{1} & b_{1} \\ c_{1} & 0 }; A_{2}=\pmat{ a_{2} & b_{2} \\ 0 & d_{2} }=\pmat{ a_{1}+a_{2} & b_{1}+b_{2} \\ c_{1} & d_{1} } \not=\varepsilon T_{1}. [/mm]

zu (iii): Sei [mm] \lambda \varepsilon \IR [/mm] bel. und [mm] A=\pmat{ a & b \\ c & 0 } \varepsilon T_{1} [/mm] bel.
Dann gilt: [mm] \lambda*A=\pmat{ \lambda*a & \lambda*b \\ \lambda*c & 0 } \varepsilon T_{1} [/mm] .

Fazit: [mm] T_{1} [/mm] ist nicht Teilraum vom [mm] \IR^{2,2} [/mm]

Wenn das oben richtig ist, dann haett ich mir natuerlich Schritt 3 sparen koennen....aber ist das ueberhaupt richtig? Oder kann man auch noch fuer [mm] T_{1} [/mm] z.b.  [mm] \pmat{ a & 0 \\ 0 & d } [/mm] schreiben? Muss man alle Faelle beruecksichtigen oder was das so richtig?^^

        
Bezug
Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Do 29.11.2007
Autor: leduart

Hallo
(ii) ist der entscheidende Punkt. alles andere kannst du weglassen. Und ja ein einziges Paar so dass die Summe nicht dazugehört reicht als Beweis.
Gruss leduart

Bezug
                
Bezug
Teilraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Do 29.11.2007
Autor: xcase

Hi,
ist denn der Ansatz ueberhaupt richtig mit [mm] T_{1} [/mm] = ... Oder muss ich da nicht alle moeglichen Matrixkombinationen aufschreiben?

MfG Tomi

Bezug
                        
Bezug
Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Do 29.11.2007
Autor: leduart

Hallo
Es hat doch niemand nach allen Vektoren aus T gefragt, also reicht, um zu zeigen, dass sie keinen VR bilden ein einziges Paar , dessen Summe nicht zu T gehört.
Ich würd nur die 2 aufschreiben! (mit den entsprechenden Summen [mm] \ne [/mm] 0!
Gruss leduart

Bezug
                                
Bezug
Teilraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Do 29.11.2007
Autor: xcase

Danke! :D Keine Ahnung aber mein Totoriumlehrer hat das dann immer umgeformt.....naja egal :D.

MfG Tomi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]