matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesTensoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Tensoren
Tensoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tensoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:10 Sa 27.08.2011
Autor: Nadia..

Hallo,

moechte gerne die folgende Aufgabe berechnen, aber weis nicht genau wie.

Sei $ V = R ^2$
und seien
[mm] $v_1= \vektor{1\\ 1},v_2= \vektor{1\\ -1},v_3= \vektor{0\\ 1}$ [/mm]
Man bestimme die Dimension des von den Vektoren
[mm] $v_1\otimes v_1, v_2 \otimes v_2, v_2 \otimes v_3, v_3 \otimes v_1$ [/mm]
erzeugten R-Unterraums von $V [mm] \otimes [/mm] _R V $.


Loesung:

Ich habe mich bemueht, aber komme irgenwie nicht weiter.

Zuerst brauche ich eine Basis von V, hier kann ich [mm] $v_1,v_3$ [/mm] benutzen, da diese  V spannen.

[mm] $v_2 [/mm] = [mm] v_1 [/mm] - [mm] 2v_3$ [/mm]

Nun ist
[mm] $v_1 \otimes v_1= [/mm] 1$
[mm] $v_2 \otimes v_2= (v_1 [/mm] - [mm] 2v_3) \otimes (v_1 [/mm] - [mm] 2v_3) [/mm] = [mm] v_1\otimes v_1 [/mm] - [mm] 2v_1\otimes v_3 [/mm] - [mm] 2v_3\otimes v_1 [/mm] + [mm] 4v_3\otimes v_3 [/mm] $
[mm] $v_2 \otimes v_3= v_1-2v_3) \otimes v_3= v_1 \otimes v_3 -2v_3$ [/mm] $
[mm] $v_3 \otimes v_1= [/mm] 1  $

Im Prinzip weiss ich wie man so ne Basis bestimmt, nur ich versteh das ganze aber nicht.

Wieso brauche ich zu beginn die zwei Basen  [mm] $v_1,v_3$ [/mm] und wieso muss ich [mm] $v_2$ [/mm] mit der Basis darstellen.

und wie bestimme ich nun die Dimension?

Viele  Gruesse

Nadia





        
Bezug
Tensoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:06 So 28.08.2011
Autor: hippias

Dein Ansatz ist vielversprechend, nur diese Gleichugen
>   [mm]v_1 \otimes v_1= 1[/mm]

>  [mm]v_3 \otimes v_1= 1 [/mm]

sind etwas irritierend. Ihr habt sicher bewiesen, dass wenn man einen VR mit Basis [mm] b_{1},..., b_{n} [/mm] hat, dass dann [mm] b_{i}\otimes b_{j} [/mm] eine Basis von [mm] V\otimes [/mm] V ist, bei Dir also [mm] b_{1}\otimes b_{1}, b_{1}\otimes b_{3}, b_{3}\otimes b_{1}, b_{3}\otimes b_{3}. [/mm] Du hast schon die gegebenen Vektoren in dieser Basis dargestellt und braeuchtest z.B. nur noch den Rang der entsprechenden Koeffizientenmatrix bestimmen; also ist die Vorgehensweise vermutlich genau so, wie auch sonst die Dimension berechnet haettest, nur die Basis sieht hier etwas merkwuerdig aus - benenne die Basisvektoren vielleicht mir [mm] c_{1}, c_{2} [/mm] usw.  



Bezug
        
Bezug
Tensoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mo 29.08.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]