matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTerme der Entwicklung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Terme der Entwicklung
Terme der Entwicklung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Terme der Entwicklung: Wie geht das?
Status: (Frage) beantwortet Status 
Datum: 03:40 Sa 12.02.2011
Autor: Ragnaroek

Aufgabe
1. Berechnen Sie den fünften Term der Entwicklung
[mm] (\bruch{2}{3}*x^\bruch{1}{2}-\bruch{1}{2x})^6 [/mm]
2. Berechnen Sie den zehnten Term der Entwicklung
[mm] (\bruch{27a^2}{b^3}+\bruch{b^2}{6a^4})^{12} [/mm]

Hallo,

meine Frage ist schlicht - wie geht das?
Ich dachte zuerst, okay - fünfter Term der entwicklung - setze für x halt 5 ein und rechnest das aus...
Was passiert, nächste Aufgabe gleichen Typs und zack, mist.. da steht a und b. Jetzt hab ich mein Mathebuch hier durchgekrault - nix, ich weiß nichtmal wo ich genau ansetzen soll, weil Terme gibts ja überall, dieses Mathewort für so vieles.. Hat jemand ne Idee? ...^^


Grüße
Ragna

        
Bezug
Terme der Entwicklung: binomischer Lehrsatz
Status: (Antwort) fertig Status 
Datum: 04:15 Sa 12.02.2011
Autor: Loddar

Hallo Ragna!


Verwende den []binomischen Lehrsatz.


Gruß
Loddar


Bezug
                
Bezug
Terme der Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 Sa 12.02.2011
Autor: Ragnaroek

Guten Tag.

Okay, also das sieht doch schon mal sehr gut aus.
Nun verstehe ich nur noch nicht so genau was es mit dem sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar - kein Problem, aber check nicht so ganz wie jetzt hier zum Beispiel:
[]http://de.wikipedia.org/wiki/Binomischer_Lehrsatz (Beispiel 1 unten)
das angewendet wird.

[mm] \vektor{3 \\ 0} [/mm] wird 1
[mm] \vektor{3 \\ 1} [/mm] wird 3
[mm] \vektor{3 \\ 2} [/mm] wird auch 3..?
[mm] \vektor{3 \\ 3} [/mm] wird 1

wie darf ich das nun verstehen?

Bezug
                        
Bezug
Terme der Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Sa 12.02.2011
Autor: MathePower

Hallo Ragnaroek,

> Guten Tag.
>  
> Okay, also das sieht doch schon mal sehr gut aus.
> Nun verstehe ich nur noch nicht so genau was es mit dem
> sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar -
> kein Problem, aber check nicht so ganz wie jetzt hier zum
> Beispiel:
>  
> []http://de.wikipedia.org/wiki/Binomischer_Lehrsatz
> (Beispiel 1 unten)
>  das angewendet wird.
>  
> [mm]\vektor{3 \\ 0}[/mm] wird 1
>  [mm]\vektor{3 \\ 1}[/mm] wird 3
>  [mm]\vektor{3 \\ 2}[/mm] wird auch 3..?
>  [mm]\vektor{3 \\ 3}[/mm] wird 1
>  
> wie darf ich das nun verstehen?


In diesem Artikel steht's.


Gruss
MathePower

Bezug
                
Bezug
Terme der Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Sa 12.02.2011
Autor: Ragnaroek

Guten Tag.

Okay, also das sieht doch schon mal sehr gut aus.
Nun verstehe ich nur noch nicht so genau was es mit dem sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar - kein Problem, aber check nicht so ganz wie jetzt hier zum Beispiel:
*moment, link war fehlerhaft
[mm] (x+y)^3 [/mm]
das angewendet wird.

[mm] \vektor{3 \\ 0} [/mm] wird 1
[mm] \vektor{3 \\ 1} [/mm] wird 3
[mm] \vektor{3 \\ 2} [/mm] wird auch 3..?
[mm] \vektor{3 \\ 3} [/mm] wird 1

wie darf ich das nun verstehen?

Bezug
                        
Bezug
Terme der Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Sa 12.02.2011
Autor: MathePower

Hallo Ragnaroek,

> Guten Tag.
>  
> Okay, also das sieht doch schon mal sehr gut aus.
> Nun verstehe ich nur noch nicht so genau was es mit dem
> sog. Entwicklungskoeffizienten auf sich hat. Bilden, klar -
> kein Problem, aber check nicht so ganz wie jetzt hier zum
> Beispiel:
>  *moment, link war fehlerhaft
>  [mm](x+y)^3[/mm]
>  das angewendet wird.
>  
> [mm]\vektor{3 \\ 0}[/mm] wird 1
>  [mm]\vektor{3 \\ 1}[/mm] wird 3
>  [mm]\vektor{3 \\ 2}[/mm] wird auch 3..?


Ja, da die Binomialkoeffizienten symmetrisch sind:

[mm]\pmat{3 \\ k }=\bruch{3!}{k!*\left(3-k\right)!})=\bruch{3!}{\left(3-k\right)!}*k!)=\pmat{3 \\ 3-k }, \ k=0,1,2,3[/mm]


>  [mm]\vektor{3 \\ 3}[/mm] wird 1
>  
> wie darf ich das nun verstehen?


[mm]\pmat{3 \\ k}[/mm] ist der Koeffizient vor [mm]x^{k}*y^{3-k}[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Terme der Entwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Sa 12.02.2011
Autor: Ragnaroek

Ahh..

Nu hab ich es..

Kein Wunder, dass ich nicht drauf gekommen bin wie sowas zu lösen ist.

Danke Dir

Gruß Ragna

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]