matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenTetraeder Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Tetraeder Dreieck
Tetraeder Dreieck < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tetraeder Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Do 13.05.2010
Autor: kushkush

Aufgabe
1. Das Dreieck A(2/2/0) B(0/4/1) C(4/-6/2) sei Grundfläche eines Tetraeders ABCS. Der Punkt S liege auf der Geraden g, die senkrecht zur Grundfläche des Tetraeders steht und durch den Schwerpunkt des Dreiecks ABC geht. Bestimme S so, dass das Tetradervolumen 27 beträgt.

hallo, zuerst habe ich berechnet:


die Dreiecksebene: $2x+y+2z-6=0$

den Schwerpunkt: [mm] $\vektor{2\\0\\1}$ [/mm]

und dann die Geradengleichung derjenigen Geraden, auf der der Punkt S liegt:

[mm] $\vektor{2\\0\\1} [/mm] + t [mm] \vektor{2\\1\\2}$ [/mm]


dann setze ich alles was ich habe ins Spatprodukt ein und setze dieses gleich 27.

Ich erhalte dann t=0.5 und das stimmt laut Lösung nicht nur nicht, sondern ist auch nur eine anstatt 2 Lösungen!


Was habe ich falsch gemacht?



Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
Tetraeder Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Do 13.05.2010
Autor: M.Rex

Hallo

> 1. Das Dreieck A(2/2/0) B(0/4/1) C(4/-6/2) sei Grundfläche
> eines Tetraeders ABCS. Der Punkt S liege auf der Geraden g,
> die senkrecht zur Grundfläche des Tetraeders steht und
> durch den Schwerpunkt des Dreiecks ABC geht. Bestimme S so,
> dass das Tetradervolumen 27 beträgt.
>  hallo, zuerst habe ich berechnet:
>  
> die Dreiecksebene: [mm]2x+y+2z-6=0[/mm]
> den Schwerpunkt: [mm]\vektor{2\\0\\1}[/mm]
> und dann die Geradengleichung derjenigen Geraden, auf der
> der Punkt S liegt:
> [mm]\vektor{2\\0\\1} + t \vektor{2\\1\\2}[/mm]
>  
>
> dann setze ich alles was ich habe ins Spatprodukt ein und
> setze dieses gleich 27.
>
> Ich erhalte dann t=0.5 und das stimmt laut Lösung nicht
> nur nicht, sondern ist auch nur eine anstatt 2 Lösungen!


Dann zeig doch mal diene Rechnungen.
Zwei Lösungen entstehen, da du eine quadratische Funktion bekommen solltest.
Graphisch gesehen ist eine der Pyramiden "oberhalb" der Ebene, die andere "unterhalb"

>
>
> Was habe ich falsch gemacht?

Dazu müsste man diene Rechnungen sehen. ;-)

>
>
>
> Ich habe diese Frage in keinem anderen Forum gestellt und
> bin für jede Antwort dankbar.

Marius

Bezug
                
Bezug
Tetraeder Dreieck: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:33 Do 13.05.2010
Autor: kushkush

[mm] |det\pmat{ -2 & 2 &2t \\ 2 & -8 & t-2\\ 1 &2 & 1+2t } [/mm] | = 27


ich sehe gerade dass man ja den Betrag nehmen muss... ???


danke!

Bezug
                        
Bezug
Tetraeder Dreieck: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 14.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]