Tetraeder und Gerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:22 Do 06.10.2011 | Autor: | Paivren |
Aufgabe | Gegegeben ist ein Tetraeder [mm] SP_{1}P_{2}P_{3} [/mm] mit S(1|-1|1), [mm] P_{1}(3|5|1), P_{2}(5|-5|5) [/mm] und [mm] P_{3}(3|3|-1).
[/mm]
Welche Strecke der Geraden mit der Parameterdarstellung [mm] \vec{x}=\vektor{2+t \\ 1-t \\ 1+t} [/mm] liegt innerhalb des Tetraeders? |
Hallo Leute,
bei der Aufgabe komm ich nicht weiter.
Hab mir überlegt, die Schnittpunkte der Geraden mit allen Ebenen, aus denen der Körper besteht, zu suchen. Das Problem dabei ist aber, dass diese Schnittpunkte ja nicht zwangsweise auf den Flächen des Körpers liegen.
Muss ich dann durch gekonntes Hingucken sehen, welche beiden Schnittpunkte die Strecke innerhalb des Tetraeders begrenzen, oder gibt es einen einfacheren Weg?
mfG.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:55 Do 06.10.2011 | Autor: | chrisno |
Etwas einfacheres als genau Hinsehen habe ich nicht anzubieten. Das Rechnen halte ich für recht aufwendig. Das Hinsehen beginnt aber schon vor der Berechnung der Schnittpunkte. Schau Dir mal den Richtungsvektor der Geraden und die Koordinaten der Punkte an. Dann kannst Du ablesen, das eine Kante des Tetraeders parallel zur Geraden liegt. Damit haben zwei der Flächen keinen Schnittpunkt mit der Geraden (oder die Gerade liegt in der jeweiligen Ebene, das interessiert hier aber nur weniger.)
Dann bleiben noch zwei Schnittpunkte mit den verbleibenden Ebenen. Die würde ich berechnen. Dann würde ich einen Würfel um den Tetraeder legen, dessen Flächen parallel zu den Koordinatenebenen liegen. Liegt der Schnittpunkt außerhalb des Würfels, liegt er auch außerhalb des Tetraeders.
Zum Schluss musst Du rechnen. Ich weiß nicht, welches die effizienteste Methode ist, mit der man prüfen kann, ob ein Punkt innerhalb eines Dreiecks liegt. Eine Möglichkeit wären die Winkel zwischen den Verbindungen des Schnittpunkts und den Eckpunkten des Dreiecks. Du kannst auch die Ebenengleichung mit den Kantenvektoren des Dreiecks aufstellen. Dann musst Du eine Bedingung formulieren, mit der man die Koeefiizeinten angeben kann, so dass alle Punkte des Dreiecks beschrieben werden.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:18 Do 06.10.2011 | Autor: | Paivren |
Ach du Schande, darauf würde ich in der Klausur morgen wohl nicht kommen D;
Naja, danke für die schnelle Antwort und den detaillierten Weg; das Prinzip ist soweit klar.
Hier ist eine Skizze wohl angebracht, um zu erkennen, welche Ebenen ich verwenden muss, um Schnittpunkte zu suchen... dumm nur, dass ich auf Skizzen meistens verzichte :D"
Schönen Abend noch.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:12 Do 06.10.2011 | Autor: | leduart |
Hallo
durch ne skizze siehst du welche flächen in Frage kommen , schneide erstmal mit denen, zeige dass die punkte auf einer Seitenfläche liegen. dannberechne den Abstand.
Gruss leduart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:51 Do 06.10.2011 | Autor: | weduwe |
da der richtungsvektor [mm] \vec{r} [/mm] der geraden parallel zu [mm] SP_2 [/mm] ist kommen - wie schon gesagt - nur die beiden ebenen [mm] E(S,P_1,P_3) [/mm] und [mm] E(P_1,P_2,P_3) [/mm] als schnittflächen in frage.
ob ein punkt in einem 3eck liegt prüft man meist so:
[mm] \overrightarrow{OP}=\overrightarrow{OA}+\alpha\cdot\overrightarrow{AB}+\beta\cdot\overrightarrow{AC} [/mm]
gilt [mm] 0\leq \alpha ,\beta\leq 1\wedge 0\leq \alpha +\beta\leq [/mm] 1 so liegt P in der fläche des 3ecks(ABC) sonst nicht
im konkreten hast du hier z.b.
[mm] \vektor{\frac{21}{5}\\-\frac{6}{5}\\\frac{16}{5}}=\vektor{3\\5\\1}+\alpha\vektor{2\\-10\\4}+\beta\vektor{0\\-2\\-2}
[/mm]
mit [mm] \alpha=\frac{3}{5} [/mm] und [mm] \beta=\frac{1}{10}.
[/mm]
dieser punkt liegt also wünschgemäß da, wo er hingehört
was auch der 2. tut
für den abstand der beiden punkte erhalte ich [mm] d=\frac{12}{5}\sqrt{3}
[/mm]
|
|
|
|