matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Textaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathe Klassen 8-10" - Textaufgabe
Textaufgabe < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Textaufgabe: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:21 Sa 03.03.2007
Autor: Philipp1337

Hallo,

Ich weiß nicht genau wie ich folgende Textaufgabe berechnen soll. Ich bin erst nach langer Zeit auf einen Lösungsweg gekommen, aber diese Zeit hab ich in einer Schulaufgabe leider nicht. Wie kommt man schnell auf einen Lösungs weg?

Aufgabe:
Bei einer zweistelligen Zahl ist die Einerziffer um 5 kleiner als die Zehnerziffer. Multipliziert man die Zahl mit ihrer Zehnerziffer, so ergibt sich die 56fache Quersumme. Wie heißt die Zahl?



Ich habe folgendes gemacht:

Einerziffer = x
Zehnerziffer = x+5
Zahl = (x+5)*10+x = 11x+50
Quersumme = (x+5)+x = 2x+5

(11x+50)*(x+5) = (2x+5)*56
11x²+55x+50x+250 = 112x+280 | -112x; -280
11x²+105+250-112x-280 = 0
11x²-7x-30 = 0

x= [mm] 7\pm\wurzel{\bruch{49+1320}{22}} [/mm]
x= [mm] 7\pm\bruch{37}{22} [/mm]
[mm] x_{1}=2 [/mm]
[mm] x_{2}=\bruch{-30}{22} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Textaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Sa 03.03.2007
Autor: Bastiane

Hallo Philipp1337!

> Ich weiß nicht genau wie ich folgende Textaufgabe berechnen
> soll. Ich bin erst nach langer Zeit auf einen Lösungsweg
> gekommen, aber diese Zeit hab ich in einer Schulaufgabe
> leider nicht. Wie kommt man schnell auf einen Lösungs weg?

Ich fürchte, da hilft nur: Üben, üben, üben! :-)

> Aufgabe:
>  Bei einer zweistelligen Zahl ist die Einerziffer um 5
> kleiner als die Zehnerziffer. Multipliziert man die Zahl
> mit ihrer Zehnerziffer, so ergibt sich die 56fache
> Quersumme. Wie heißt die Zahl?
>  
>
>
> Ich habe folgendes gemacht:
>  
> Einerziffer = x
>  Zehnerziffer = x+5
>  Zahl = (x+5)*10+x = 11x+50
>  Quersumme = (x+5)+x = 2x+5
>  
> (11x+50)*(x+5) = (2x+5)*56
>  11x²+55x+50x+250 = 112x+280 | -112x; -280
>  11x²+105+250-112x-280 = 0
>  11x²-7x-30 = 0
>  
> x= [mm]7\pm\wurzel{\bruch{49+1320}{22}}[/mm]
> x= [mm]7\pm\bruch{37}{22}[/mm]
>  [mm]x_{1}=2[/mm]
>  [mm]x_{2}=\bruch{-30}{22}[/mm]

Habe deine Rechnung jetzt nicht nachgerechnet, aber die Annahmen oben mit Einerziffer usw. sind richtig, und das Ergebnis stimmt auch - für x=2 (negativ macht's ja keinen Sinn...). Und ich selbst habe mich beim ersten Versuch auch verrechnet. Vielleicht ist diese Aufgabe aber auch eine sehr schwierige, die in einer Arbeit höchstens als Zusatzaufgabe dran kommt!? In der Uni sind jedenfalls die Übungsaufgaben meistens wesentlich schwieriger als die Prüfungsaufgaben. ;-) Und wenn du noch ein paar solcher Aufgaben hast, dann kannst du dich daran ja mal ein bisschen üben. :-)
Wenn man es einmal raus hat, die Bedingungen aufzustellen, ist der Rest ja "nur noch" rechnen, was man natürlich auch können muss...

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Textaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Sa 03.03.2007
Autor: Josef

Hallo Philipp


>  

> Aufgabe:
>  Bei einer zweistelligen Zahl ist die Einerziffer um 5
> kleiner als die Zehnerziffer. Multipliziert man die Zahl
> mit ihrer Zehnerziffer, so ergibt sich die 56fache
> Quersumme. Wie heißt die Zahl?
>  
>
>
> Ich habe folgendes gemacht:
>  
> Einerziffer = x

>  Zehnerziffer = x+5


>  Zahl = (x+5)*10+x = 11x+50
>  Quersumme = (x+5)+x = 2x+5
>  
> (11x+50)*(x+5) = (2x+5)*56
>  11x²+55x+50x+250 = 112x+280 | -112x; -280
>  11x²+105+250-112x-280 = 0
>  11x²-7x-30 = 0
>  
> x= [mm]7\pm\wurzel{\bruch{49+1320}{22}}[/mm]
> x= [mm]7\pm\bruch{37}{22}[/mm]
>  [mm]x_{1}=2[/mm]
>  [mm]x_{2}=\bruch{-30}{22}[/mm]
>  

>

Ansatz:

[10(x+5) + x]*(x+5) = 56*[x+5)+x]

Auflösung =

[mm] 11x^2 [/mm] - 7x -30 = 0

[mm]x^2 - \bruch{7x}{11} - \bruch{30}{11} = 0[/mm]

[mm]x_{1;2} = \bruch{7}{22} \pm\wurzel{\bruch{49}{484}+\bruch{1320}{484}}[/mm]

[mm] x_1 [/mm] = 2

Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]