matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenTipp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Tipp
Tipp < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tipp: Logarithmusfunktion
Status: (Frage) beantwortet Status 
Datum: 11:24 Sa 10.12.2011
Autor: JamesBlunt

Hallo,
ich habe noch nicht ganz verstandenet, wie man Logarithmusfunktionen ableitet..

mir ist bekannt dass die Ableitung von ln(x) = 1:x ist..
aber das hilft mir auch nicht..
Hat irgendwer gute Links dazu, oder kann mir jemand das anhand dieses Beispiels erklären?

f(x) = [mm] ln(1+x^{2}) [/mm]

Das kann ich ja jetzt noch mit den Logarithmengesetzen umschreiben:

f(x) = ln(1) * [mm] ln(x^{2}) [/mm]

Doch wie komme ich auf die erste Ableitung?

Lg


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Sa 10.12.2011
Autor: reverend

Hallo JamesBlunt,

hier geht es wohl eher um die Kettenregel.

>  ich habe noch nicht ganz verstandenet, wie man
> Logarithmusfunktionen ableitet..
>  
> mir ist bekannt dass die Ableitung von ln(x) = 1:x ist..

Dann weißt Du dazu eigentlich schon alles, was man wissen muss, um auch komplizierte Funktionen, die den Logarithmus beinhalten, abzuleiten.

> aber das hilft mir auch nicht..
>  Hat irgendwer gute Links dazu, oder kann mir jemand das
> anhand dieses Beispiels erklären?

Besser am Beispiel:

> f(x) = [mm]ln(1+x^{2})[/mm]
>  
> Das kann ich ja jetzt noch mit den Logarithmengesetzen
> umschreiben:
>  
> f(x) = ln(1) * [mm]ln(x^{2})[/mm]

Autsch. Das geht gar nicht.
Das folgt keinem der MBLogarithmusgesetze.

> Doch wie komme ich auf die erste Ableitung?

Indem Du die MBKettenregel anwendest.
Hier ist [mm] h(x)=1+x^2 [/mm] und [mm] g(h)=\ln{h}. [/mm]

Grüße
reverend


Bezug
                
Bezug
Tipp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Sa 10.12.2011
Autor: JamesBlunt

ah okay danke schonmal, aber wo kommt daas ln(h) her- für g(x) ?

Lg

Bezug
                        
Bezug
Tipp: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Sa 10.12.2011
Autor: leduart

Hallo
bei verketteten Funktionen gibts keine Vereinbarung, wie die innere heisst. in einer Schule immer g/x) in ner anderen h(x) in ner dritten u(x) usw
du hast [mm] f(x)=ln(1+x^2) [/mm] jetzt kannst du [mm] 1+x^2=g(x) [/mm] oder [mm] 1+x^2=u(x) [/mm] oder tausend andere namen nehmen.
Immer gilt f'=''(g)*g'  f'=f'(u)*u'  usw.
namen sind Schall und Rauch
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]