matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieTopologie eindeutig?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Topologie eindeutig?
Topologie eindeutig? < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Topologie eindeutig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 So 27.04.2008
Autor: Aurelie

Aufgabe
Es sei X eine mene und [mm] (Y,\tau_{y}) [/mm] ein topologischer Raum. Ferner sei [mm] f:X\to [/mm] Y eine Abbildung. Finden sie eine bezüglich Mengeninklusion kleinste Topologie auf X, so dass f astetig wird. Ist diese Topologie eindeutig?  

Hallo Leute,
Die gesuchte kleinste Topologie hab ich mit [mm] \tau_{x}=\{f^{-1}(O)|O\in\tau_{y}\} [/mm] und dies auch bewiesen. Bei der Frage ob die eindeutig ist würde ich denken ja aber ich weiß nicht wie ich da argumentieren kann?

Gruß,
Christine

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Topologie eindeutig?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 So 27.04.2008
Autor: Marcel

Hallo Christine,

> Es sei X eine mene und [mm](Y,\tau_{y})[/mm] ein topologischer Raum.
> Ferner sei [mm]f:X\to[/mm] Y eine Abbildung. Finden sie eine
> bezüglich Mengeninklusion kleinste Topologie auf X, so dass
> f astetig wird. Ist diese Topologie eindeutig?
> Hallo Leute,
>  Die gesuchte kleinste Topologie hab ich mit
> [mm]\tau_{x}=\{f^{-1}(O)|O\in\tau_{y}\}[/mm] und dies auch bewiesen.
> Bei der Frage ob die eindeutig ist würde ich denken ja aber
> ich weiß nicht wie ich da argumentieren kann?

es gibt prinzipiell zwei Möglichkeiten:
1.) Sei [mm] $\mathbb{M}:=\{T: T \mbox{ ist Topologie auf }X \mbox{ so, dass obige Abbildung }f \mbox{ stetig ist}\}$. [/mm]

Zeige:
[mm] $\tau_{x}=\bigcap_{T \in \mathbb{M}}T$ [/mm]

Warum folgt damit auch schon die Eindeutigkeit von [mm] $\tau_{x}$? [/mm]

2.) (Wobei diese Variante eigentlich sehr eng mit 1.) verbunden ist):

Nimm' an, es gäbe eine weitere kleinste Topologie auf $X$ so, dass $f: X [mm] \to [/mm] Y$ stetig wird. Nennen wir diese mal [mm] $T\,'$. [/mm]

Angenommen, es wäre [mm] $T\,' \not= \tau_{x}$. [/mm] Betrachten wir nun mal die neue Topologie [mm] $T_{\mbox{neu}}:=T\,' \cap \tau_{x}$. [/mm] Ich behaupte:
Dann ist [mm] $T_{\mbox{neu}}$ [/mm] eine weitere Topologie, so, dass $f: X [mm] \to [/mm] Y$ stetig ist. Aber [mm] $T_{\mbox{neu}}$ [/mm] ist echt kleiner als [mm] $T\,'$ [/mm] und auch echt kleiner als [mm] $\tau_{x}$, [/mm] weil...? Das ist ein Widerspruch zu...?

P.S.:
Zur Erinnerung:
Der Schnitt zweier Topologien ist wieder eine Topologie.
(Bzw. bei 1.) sollte man sogar besser die Aussage: "Der Schnitt beliebig vieler Topologien ist wieder eine Topologie." benutzen.)

Was Du noch beweisen solltest:
Sind [mm] $T_1$, $T_2 \in \mathbb{M}$, [/mm] so ist [mm] $(T_1 \cap T_2) \in \mathbb{M}$. [/mm] D.h., dass der Schnitt zweier Topologien, bzgl. denen [mm] $\black{f}$ [/mm] stetig ist, auch wieder eine Topologie ist, so dass [mm] $\black{f}$ [/mm] stetig ist.
(Bzw. bei 1.): "Der Schnitt beliebig vieler Topologien, bzgl. denen [mm] $\black{f}$ [/mm] stetig ist, ergibt wieder eine Topologie bzgl. der [mm] $\black{f}$ [/mm] stetig ist.")

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]