matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikTrägheitstensoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "HochschulPhysik" - Trägheitstensoren
Trägheitstensoren < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trägheitstensoren: Trägheitstensor Drehimpuls
Status: (Frage) beantwortet Status 
Datum: 23:29 Mi 20.01.2010
Autor: dom88

Hallo,

Ich muss momentan von der Uni aus sehr viel mit Trägheitstensoren rechnen. Einer der ertsne Fragen, die ich mir aber gestellt habe, war, was unterscheidet den Tensor von der Matrix und welche Vorteile verschafft er mir.

Angenommen ich habe einen Körper dessen Trägheitsmomente ich für alle Achsen ausrechnen soll. Dabei fallen mir natürlich erst einmal die Momente für die X-, Y-, Z-Achse ein. Dann hab ich aber noch gelesen, dass es sowas wie Momente von Xy-, XZ-, ZY-"Achsen" geben soll. Sogenannte Deviationsmomente.
Wie kann ich die Komponenten die im Tensor stehen begreifen? Wie kann ich das "Bild" meines abgebildeten Vektors interpretieren. Ist das der Drehimpuls? entweder parallel oder nicht.

Die fragen beziehen sich immer auf nicht diagonale Tensoren, also die Hauptträgheistachsen sollen nicht das Koordinatensystem bilden.

Viele Fragen...ich weiß. Nur unser Prof hat die doofe angewohntheit mit der Tür isn haus zu platzen und kaum hintergrundinfo zu geben.
ich bin im ersten semester. da hat man noch nicht soviel übung mit tensoren. daher die fragen.

danke

dom

        
Bezug
Trägheitstensoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Do 21.01.2010
Autor: Event_Horizon

Hallo!

In der Pysik gibt es oft keinen Unterschied zwischen Tensor und Matrix. Vielleicht ein wichtiges Gegenbeispiel: Das Vektorprodukt läßt sich auch mit einem Tensor schreiben, das wäre sowas wie eine 3D-Matrix der Größe [mm] 3\times3\times3 [/mm] .

Eine andere Schreibweise für das Skalarprodukt ist [mm] z_i=\sum_j\sum_k\epsilon_{ijk}x_jy_k [/mm] wobei [mm] \epsilon_{ijk}=0 [/mm] wenn von i, j, k zwei Zahlen gleich sind, =1 wenn i, j, k die Zahlenfolge 1, 2, 3 bilden. für jede andere Zahlenfolge schaust du, wie oft du die Ziffern vertauschen mußt, bis wieder 1, 2, 3 da steht. Bei ungraden Anzahlen an Vertauschungen ist [mm] \epsilon_{ijk}=-1, [/mm] sonst [mm] \epsilon_{ijk}=+1 [/mm] . Diese [mm] \epsilon_{ijk} [/mm] sind dann die Einträge in dem genannten Tensor.

Zur Physik:
Betrachte den Tensor mal als normale lin. Abbildung.
Wenn die Deviationsmomente verschwinden, die Deviationsmomente also null sind, bist du im Hauptachsensystem. Wenn du nun aber dein Koordinatensystem wechselst, wird sich auch die Matrix ändern (Koordinatentransdormation). Dann können auch die Elemente abseits der Diagonalen Werte ungleich 0 annehmen.

Wenn du also einen solchen Tensor findest, dann weißt du, daß die Trägheitsachsen nicht den Koordinatenachsen entsprechen. (Dazu könntest du die Eigenvektoren des Tensors berechnen, das sind die Trägheitsachsen)


Oder anders: Wenn sich ein Gegenstand nicht um eine Hauptträgheitsachse dreht, dann stehen im Drehimpuls Anteile aller Hauptträgheitsachsen drin. Im Hauptträgheitssystem ist das einfach zu verstehen, ansonsten steckt da eben noch etwas lineare Algebra zur Umrechnung drin.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]