Transformation Gleichverteilun < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei X stetig gleichverteilte Zufallsvariable aus Einheitsintervall [0,1]. Berechnen Sie Erwartungswert von transformierten Zufallsvariablen 1/x und log(x). |
Das Einheitsintervall ist abgeschlossen und die Transformation damit nicht sauber definiert, oder? Bei der Berechnung des Erwartungswertes und der Summation stehen nicht definierte Werte in den Grenzfällen.
Wie behandelt man sowas?
Jemand eine Ahnung?
Vielen Dank für jeden Tipp,
Patrick
P.S:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:59 Mi 01.11.2006 | Autor: | luis52 |
Hallo Patrick,
die Transformation ist schon sauber definiert, denn zwischen einer
Gleichverteilung in [0,1] bzw. in (0,1) gibt es so gut wie keine
Unterschiede. Im ersten Fall ist zu fragen, ob [mm] $\mbox{E}[1/X]$
[/mm]
ueberhaupt existiert. Sauber hingeschrieben musst du fragen, ob der
Grenzwert [mm] $\int_0^1(1/x)dx=\lim_{t\to 0+}\int_t^1(1/x)dx$ [/mm] existiert.
(Die Obergrenze macht keine Schwierigkeit). Eine Stammfunktion ist
[mm] $\log(x)$, [/mm] so dass der Grenzwert von [mm] $\log(1)-\log(t)$ [/mm] bestimmt werden
muss, der jedoch nicht existiert. Mithin besitzt $1/X$ keinen
Erwartungswert.
Die Vorgehensweise fuer die Berechnung von [mm] $\mbox{E}[\log(X)]$ [/mm] ist
analog, jedoch existiert hier der Erwartungswert. Ich erhalte $-1$.
hth
|
|
|
|