matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperTransitive Operation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Transitive Operation
Transitive Operation < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transitive Operation: Idee
Status: (Frage) beantwortet Status 
Datum: 17:12 Sa 23.11.2013
Autor: derriemann

Aufgabe
Zeigen Sie, dass [mm] SL_{2}(\IR) [/mm] transitiv auf [mm] \overline{\IR} [/mm] = [mm] \IR \cup \{\infty\} [/mm] operiert vermöge:

[mm] \pmat{a & b \\ c & d}x [/mm] = [mm] \begin{cases} \infty, & \mbox{falls } x=\infty,c=0 \\ a/c, & \mbox{falls } x=\infty , c\not= 0 \\ \infty , & \mbox{falls } x \not= \infty , cx+d=0 \\ (ax+b)/(cx+d),& \mbox{sonst} \end{cases} [/mm]

Hallöchen :-)

Stecke leider bei dieser (bestimmt nicht schweren) Aufgabe fest. Bei mir scheitert es momentan an der Begrifflichkeit "Transitive Operation":
Sei G Gruppe, M eine Menge. G operiert transitiv auf M, wenn es ein x [mm] \in [/mm] M gibt, mit Gx=M.
Ich weiß nicht so richtig, wie ich hier jetzt rangehen soll. Muss ich einfach nur zeigen: [mm] \exists [/mm] x [mm] \in \IR: \pmat{ a & b \\ c & d}x=\overline{\IR}, [/mm] also wenn x [mm] \not= \infty [/mm] muss gelten:
[mm] \{\infty\} \cup \{(ax+b)/(cx+d)\} [/mm] = [mm] \overline{\IR}? [/mm]

Würde mich über einen kurzen Tipp freuen :-)

Viele Grüße
derriemann

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Transitive Operation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Sa 23.11.2013
Autor: felixf

Moin!

> Zeigen Sie, dass [mm]SL_{2}(\IR)[/mm] transitiv auf [mm]\overline{\IR}[/mm] =
> [mm]\IR \cup \{\infty\}[/mm] operiert vermöge:
>  
> [mm]\pmat{a & b \\ c & d}x[/mm] = [mm]\begin{cases} \infty, & \mbox{falls } x=\infty,c=0 \\ a/c, & \mbox{falls } x=\infty , c\not= 0 \\ \infty , & \mbox{falls } x \not= \infty , cx+d=0 \\ (ax+b)/(cx+d),& \mbox{sonst} \end{cases}[/mm]
>  
> Hallöchen :-)
>  
> Stecke leider bei dieser (bestimmt nicht schweren) Aufgabe
> fest. Bei mir scheitert es momentan an der Begrifflichkeit
> "Transitive Operation":
>  Sei G Gruppe, M eine Menge. G operiert transitiv auf M,
> wenn es ein x [mm]\in[/mm] M gibt, mit Gx=M.

Genauer: dies muss fuer jedes $x [mm] \in [/mm] M$ gelten, da es eine Gruppenoperation ist.

Du kannst also z.B. $x = 0$ waehlen. (Damit wird die Formel sehr einfach.) Jetzt rechne [mm] $\pmat{a & b \\ c & d} [/mm] x$ mit der obigen Formel aus, und dann kannst du fuer jedes $y [mm] \in \overline{\IR}$ [/mm] eine Wahl von Parametern angeben, dass $y$ herauskommt.

LG Felix


Bezug
                
Bezug
Transitive Operation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:38 So 24.11.2013
Autor: derriemann

Hey, danke für die Antwort :-)

Hm, also z.B.

sei x = 0:

[mm] \pmat{ a & b \\ c & d}(x)= [/mm] b/d

Sei y [mm] \in \overline{\IR}: [/mm] b/d * dy/b = y, also transitiv für x = 0


sei x [mm] \not= \{0, \infty\}: [/mm]

[mm] \pmat{ a & b \\ c & d}(x) [/mm] = [mm] \infty [/mm]

Wenn y = [mm] \infty [/mm] gilt: [mm] \infty*z [/mm] (z [mm] \in \overline{\IR}) [/mm] = [mm] \infty [/mm] = y
Wenn y [mm] \not= \infty [/mm] gilt: Nun kann man doch keinen Parameter angeben, so dass [mm] \infty [/mm] * z = y?

LG


Bezug
                        
Bezug
Transitive Operation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 26.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Transitive Operation: Operation zeigen
Status: (Antwort) fertig Status 
Datum: 11:54 So 24.11.2013
Autor: Schadowmaster

Hey,

felix hat dir ja schon gesagt, wie du zeigen kannst, dass die Operation transitiv ist.
Was du hier nicht vernachlässigen solltest ist die Frage, warum die gegebene Abbildung überhaupt eine Operation ist.
Da die Abbildung ja nicht so einfach ist, dass man sagen könnte "klarerweise ist das eine Operation", würde ich als Teil der Lösung auch dafür ein wenig Zeit aufwenden.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]