matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenTranslation lineare Abbildung?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Translation lineare Abbildung?
Translation lineare Abbildung? < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Translation lineare Abbildung?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:55 Di 07.12.2010
Autor: Pokojovix

Aufgabe
Sei n [mm] \in \IN. P_n [/mm] = [mm] \{p : \IR \to \IR | p(x) = \summe_{k=0}^{n} a_x x^k, a_k \in \IR, k = 0, \ldots , n \} [/mm] bezeichne den Vektorraum aller reellen Polynome, dessen Grad n nicht übersteigt. Desweiteren seien folgende Abbildungen gegeben:
[...]
3) [mm] T_x_0 [/mm] :  [mm] P_n \to P_n, [/mm] p [mm] \mapsto p(\cdot [/mm] - [mm] x_0) [/mm] für ein beliebiges [mm] x_o \in \IR [/mm] (Translation).

a) Zeigen Sie, dass die Abbildungen [...] und [mm] T_x_0 [/mm] linear sind.
b) Geben Sie jeweils durch geschickte Basiswahl eine möglichst einfache Matrixdarstellung der linearen Abbildungen [...] und [mm] T_x_0 [/mm] an.

Hallo Forum!

Mein Problem bei der Aufgabe ist, dass ich meine, dass die Translation keine lineare Abbildung ist:
Ich nehme als Beispiel: [mm] T_x_0(a) [/mm] = a - [mm] x_0 [/mm] bzw. [mm] T_x_0(b) [/mm] = b - [mm] x_0 [/mm]
Dann ist [mm] T_x_0(a) [/mm] + [mm] T_x_0(b) [/mm] = a - [mm] x_0 [/mm] + b - [mm] x_0 [/mm] = a+b - 2 [mm] \cdot x_0 \not= [/mm] T(a+b) = (a+b) - [mm] x_0. [/mm]

Stimmt das so? Dann wäre ja ein Fehler in der Aufgabe...

Danke schon mal im Voraus und Grü0e
Pokojovix

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Translation lineare Abbildung?: Antwort
Status: (Antwort) fertig Status 
Datum: 00:26 Mi 08.12.2010
Autor: leduart

Hallo
ich dachte die Abbildung bildet [mm] p(x)=a_0+a_1x*... [/mm]
auf [mm] p(x)=a_0+a:1(x-x_0)+a_2*(x-x_0)^2.... [/mm] ab. das ist eine Translation inx-Richtung.
du machst aber ne Abbildung [mm] p(x)+x_0 [/mm] daraus. ist das so gemeint?
ich versteh das $ [mm] p\mapsto p(\cdot [/mm] $ - $ [mm] x_0) [/mm] $ nicht wirklich. wird das irgendwo erklärt?
Gruss leduart


Bezug
                
Bezug
Translation lineare Abbildung?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:48 Mi 08.12.2010
Autor: felixf

Moin leduart,

>  ich dachte die Abbildung bildet [mm]p(x)=a_0+a_1x*...[/mm]
>  auf [mm]p(x)=a_0+a:1(x-x_0)+a_2*(x-x_0)^2....[/mm] ab. das ist eine
> Translation inx-Richtung.

da denkst du richtig! Genau das ist gemeint.

> du machst aber ne Abbildung [mm]p(x)+x_0[/mm] daraus. ist das so
> gemeint?

Nein, das ist falsch.

>  ich versteh das [mm]p\mapsto p(\cdot[/mm] - [mm]x_0)[/mm] nicht wirklich.

Das [mm] "$\cdot$" [/mm] ist hier ein Platzhalter. Ein Ausdruck wie [mm] $f(\cdot)$ [/mm] bezeichnet die Funktion $x [mm] \mapsto [/mm] f(x)$.

Also man kann auch schreiben, $p [mm] \mapsto [/mm] (x [mm] \mapsto [/mm] p(x - [mm] x_0))$. [/mm]

LG Felix


Bezug
                        
Bezug
Translation lineare Abbildung?: alles klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:57 Mi 08.12.2010
Autor: Pokojovix

Hallo!

Danke an euch beide! Mit der Verschiebung in x-Richtung ist es natürlich eine lineare Abbildung.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]