matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraTransponierte und Adjungierte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Transponierte und Adjungierte
Transponierte und Adjungierte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transponierte und Adjungierte: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:25 So 22.05.2005
Autor: ThillOmanN

Ein fröhliches Hallo an alle,

ich bin frisch Registriert und hab da doch gleich mal ne Frage.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

In einer Aufgabe sollen wir zeigen, dass

[mm] (A_1,A_2,...,A_k)^{-1} [/mm] = [mm] A_k(^-1) [/mm] ... [mm] A_2^{-1} A_1^{-1} [/mm]
und
[mm] (A_1,A_2,...,A_k)^{ad}= A_k^{ad}* [/mm] ... [mm] *A_2^{ad} A_1^{ad} [/mm]

mit A Matrix über [mm] K=\IR [/mm] oder [mm] K=\IC. [/mm]

Als Hinweis, wir sollen uns doch noch mal die Def. von adjungiert und transponiert ansehen.

Meine Frage nun ist:

Wie kann ich das Skalarprodukt mehrerer Matrizen berechnen und welche Sätze und dazugehörigen Beweise sind für die Problemstellung interessant?

        
Bezug
Transponierte und Adjungierte: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 So 22.05.2005
Autor: DaMenge

Ein fröhliches Hallo zurück !!

sollen alle [mm] A_i [/mm] Matrizen sein?

Dann scheint es mir hier aber nicht um ein Skalarprodukt von Matrizen zu gehen (ich wüsste auch nicht, wie eins definiert ist), sondern das normale Produkt der Matrizen. Die Klammer mit dem hoch minus eins bedeutet nur, dass das ganze Produkt invertiert sein soll.

Der Beweis ist relativ einfach, (sei B das Produkt der Matrizen) du musst ja nur zeigen, dass B' eine Inverse von B ist und das macht man, indsem man schaut, ob $ B*B' =E $ und $ B'*B=E $ ist, wobei E die Einheitsmatrix ist.

bei der Transponierten oder Adjungierten müsstest du gewisse Sätze kenn um zu wissen, was $ [mm] B*B^T [/mm] $ um den selben Trick anzuwqenden.
Kennst du denn solche Sätze? bzw. ist noch was über A bekannt?

viele Grüße
DaMenge

Bezug
                
Bezug
Transponierte und Adjungierte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 So 22.05.2005
Autor: ThillOmanN

Mit Skalarprodukt meinte ich natürlich nicht, dass die [mm] A_i [/mm] Matrizenmit dem Skalarprodukt verknüpft sind.
Ich bin auf diese Frage gestoßen, weil ja die Adjungierte übers Skalarprodukt definiert ist.
Tschuldigung das das nicht klar formuliert war.

Der Tipp war fürs erste hilfreich, aber was mich noch interessiert ist die Frage warum sich die Reihenfolge vertauscht?

Bezug
                        
Bezug
Transponierte und Adjungierte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 So 22.05.2005
Autor: DaMenge

Hi,

> Der Tipp war fürs erste hilfreich, aber was mich noch
> interessiert ist die Frage warum sich die Reihenfolge
> vertauscht?

das siehst du, wenn du B'*B und B*B' versuchst auszurechnen - erst indem sich die Reihenfolge vertauscht passt es gerade so, dass sich alles wegkürzt.

übrigens : wenn du bei deiner zweiten Aufgabe zur Transponierten bzw. Adjungierten nichts weiter an Dein Produkt vorraussetzt (selbstadjungiert zum Beispiel), dann musst du entweder wissen, wodurch die Adjungierte eindeutig bestimmt ist (also EURE definition nachschlagen), oder du musst dies wohl für zwei Matrizen (statt k) durch stures Ausrechnen zeigen und dann den rest induktiv schließen.
(ich setze deshalb mal auf "reagiert", statt auf teilweise beantwortet )

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]