matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisTrennungssatz von Hahn-Banach
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Trennungssatz von Hahn-Banach
Trennungssatz von Hahn-Banach < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trennungssatz von Hahn-Banach: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:42 Mi 23.05.2018
Autor: mathstu

Aufgabe
Sei M [mm] \subset [/mm] X abgeschlossen und konvex, sei X ein Hilbertraum und sei x [mm] \not\in [/mm] M. Beweise mit Hilfe des Projektionssatzes, dass [mm] \phi \in [/mm] X', also ein stetig lineares Funktional existiert mit
[mm] Re\phi(x) [/mm] < [mm] inf\{Re\phi(y) : y \in M\}. [/mm]

Hallo,

Es geht um obige Aufgabe und ich habe damit so meine Probleme.
Der Projektionssatz den wir in der VL hatten sagt aus, dass wir zu jedem Element des Hilbertraumes ein nächstes Element in M finden.
Also existiert für unser x [mm] \not\in [/mm] M, [mm] x_{0} \in [/mm] M, so dass
[mm] \parallel x-x_{0}\parallel\le\parallel x-x_{1}\parallel [/mm] für alle [mm] x_{1} \in [/mm] M.
Ich sehe allerdings überhaupt nicht, wie ich diese Aussage des Projektionssatzes zum Beweis der Aufgabe benutzen kann oder wenigstens wie der nächste Schritt aussehen würde.
Ich würde mich freuen wenn mir jemand behilflich sein kann.

Viele Grüße, mathstu


        
Bezug
Trennungssatz von Hahn-Banach: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Mi 23.05.2018
Autor: fred97

Zur Orientierung schau Dir mal Satz 1.3 und Kor.1.4 in

http://num.math.uni-goettingen.de/werner/opti.pdf

an und nutze aus, wie man stetige lineare Funktionale auf Hilberträumen mit Hilfe des Skalarprodukts darstellen kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 39m 4. fred97
DiffGlGew/Lösung der DGL bestimmen
Status vor 16h 47m 7. fred97
DiffGlGew/Anfangswertaufgabe lösen
Status vor 17h 30m 6. HJKweseleit
DiffGlGew/Anfangswertaufgabe lösen
Status vor 18h 56m 5. Nico_L.
S8-10/Bruchgleichung lösen
Status vor 1d 16h 56m 5. mathelernender
ZahlTheo/Dedekindsche Psi-Funktion
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]