matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikTreppenlauf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Diskrete Mathematik" - Treppenlauf
Treppenlauf < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Treppenlauf: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:13 So 27.02.2011
Autor: bluepeople12

Aufgabe
Für zwei natürliche Zahlen m, n sei ein Gitte mit m + 1 horizontalen und n + 1 vertikalen Linien gegeben. Ein (n, m)-Treppenlauf ist eine Möglichkeig vom Gitterpunkt (0, 0) (links unten) zum Gitterpunkt (n, m) rechts oben) zu gelangen, indem man immer entweder einen Schritt nach rechts oder einen nach oben macht. Wieviele (n, m)-Treppenläufe gibt es?

Ehrlich gesagt fällt mir hier leider nichts brauchbares ein, könnt ihr mir da ein paar Tipps geben ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Treppenlauf: Idee
Status: (Antwort) fertig Status 
Datum: 16:05 So 27.02.2011
Autor: kamaleonti

Hallo bluepeople,
> Für zwei natürliche Zahlen m, n sei ein Gitte mit m + 1
> horizontalen und n + 1 vertikalen Linien gegeben. Ein (n,
> m)-Treppenlauf ist eine Möglichkeig vom Gitterpunkt (0, 0)
> (links unten) zum Gitterpunkt (n, m) rechts oben) zu
> gelangen, indem man immer entweder einen Schritt nach
> rechts oder einen nach oben macht. Wieviele (n,
> m)-Treppenläufe gibt es?
>  Ehrlich gesagt fällt mir hier leider nichts brauchbares
> ein, könnt ihr mir da ein paar Tipps geben ?

Das ist keine leichte Aufgabe.

Es macht Sinn sich erstmal etwas in dieser Richtung zu überlegen:
Wir stellen uns die Punkte des Gitters mit ganzzahligen x- und y-Koordinaten vor. Das Gitter hat die Höhe m. Ein Treppenlauf bewegt sich also genau m Schritte nach oben. Nun ist die Frage: Wie können wir diese m 'Steigungsschritte' auf die n+1 Wegpunkte in x-Richtung (das ist die Menge W der x-Koordinaten des Gitters [mm] \{0,1,\ldots,n\}) [/mm] verteilen?
Die Anzahl an Möglichkeiten dafür ist äquivalent zur gesuchten, da die waagerechten Verbindungen durch eine jede dieser Verteilungen eindeutig bestimmt sind.

Die Anzahl der Möglichkeiten, die m Höhenschritte auf die n+1 Elemente der Menge W aufzuteilen, ist die Anzahl der Zerlegungen der Zahl m in n+1 (nichtnegative ganzzahlige) Summanden. Dabei ist die Reihenfolge relevant. Bezeichnen wir diese mit S(m,n+1). Hier kommt nun die Hauptarbeit. Wir müssen Eigenschaften von S finden.

Es ist klar, dass S(0, n)=0, denn die einzige Möglichkeit ist [mm] 0=\underbrace{0+0+\ldots+0}_{n \text{ mal}}. [/mm]
Ferner ist S(1, n)=n, denn in der Zerlegung kann die 1 an n verschiedenen stellen stehen.

Hm, nun könnte man versuchen ein paar rekursive Abhängigkeiten zu bestimmen. Mir ist z. B. aufgefallen
[mm] S(m,n+1)=\sum_{i=0}^mS(m-i,n) [/mm]

Ich werde mich noch ein bisschen mit der Aufgabe beschäftigen, da ich sie sehr interessant finde. Man kann sich hier sicherlich sehr viel herleiten. Es kommt letztendlich drauf an, in welcher Form du die Aufgabe lösen musst.

Hattet ihr schon ähnliche Probleme behandelt? Ist das eine Olympiadeaufgabe?

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

Bezug
        
Bezug
Treppenlauf: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 So 27.02.2011
Autor: Teufel

Hi!

Sei z.B. n=2, m=3.

Dann kann man einen Treppenlauf so darstellen:
ROORO, wobei R heißt, dass man eben nach rechts geht, O nach oben.
Oder RROOO, OORRO, ...

Jede Zeichenkette, die aus 3 Os und 2 Rs besteht, steht also genau für einen Weg (und umgedreht, ein Weg kann man eindeutig als solch eine Zeichenkette schreiben).
Also musst du nur zählen, wie viele solcher Zeichenketten es gibt. Und dafür habt ihr sicher eine Formel.



Bezug
                
Bezug
Treppenlauf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Mo 28.02.2011
Autor: bluepeople12

Danke für den Hinweis, er hat mir geholfen etwas ein wenig mehr zu verstehen (+ die Lösung eines Freundes):

Das ist wie eine eine Multimenge:

Wir haben eine Menge mit m O's und n R's

=> [mm] \vektor{n + m \\ n} [/mm] = [mm] \vektor{n + m \\ m} [/mm]

Das ist die Lösung. Nur eine Frage hab ich noch als Verständnis: Warum gerade wird bei diesem Binomialkoeffizienten unten n bzw. m genommen und nichts anderes. Das konnte ich mir leider nicht erklären bisher. Wäre nett wenn ihr mir das erklären könntet...

Bezug
                        
Bezug
Treppenlauf: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Mo 28.02.2011
Autor: Teufel

Hi!

Genau.

Also du hast ja m+n Zeichen (z.B. m Os und n Rs oder umgedreht), von denen eben n untereinander gleich sind und m untereinander gleich sind.

Willst du die m+n Zeichen rumpermutieren, hast du dafür (n+m)! Möglichkeiten. Weil aber, wie gesagt, n und m unter ihnen gleich sind, musst du (n+m)! noch durch n! und durch m! teilen.

Daher hast du [mm] \bruch{(n+m)!}{n!*m!}=\vektor{n+m \\ n} [/mm] als Ergebnis.


Eine andere Sichtweise ist folgende:
Du hast n+m Xe vor dir liegen. Nun willst du m von diesen Xen in Os verwandeln und die restlichen n in Rs (denn so kriegst du ja auch eine gewünschte Zeichenkette raus).
Dazu musst du nur wissen, auf wie viele Arten du m Xe von diesen n+m Xen raussuchen kannst, die du in Os verwandelst (der Rest wird dann zu Rs). Da die Reihenfolge auch egal ist, hast du auch hier den Binomialkoeffizienten [mm] \vektor{n+m \\ m}=\vektor{n+m \\ n}, [/mm] der dir ja genau angibt, auf wie viele Arten du m Elemente aus m+n raussuchen kannst.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]