matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Trigon. Dreiecksberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Trigon. Dreiecksberechnung
Trigon. Dreiecksberechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigon. Dreiecksberechnung: Aufgabe zu einem Dreieck
Status: (Frage) beantwortet Status 
Datum: 18:17 Mo 23.02.2009
Autor: Database

Aufgabe
In der Figur (siehe Bild) seien a, b und [mm] \beta [/mm] gegeben. Berechne Strecke MH. Notiere dazu Schritt für Schritt das verwendete Dreieck und die verwendete Winkelfunktionen.

[Dateianhang nicht öffentlich]


Gegeben: a=5cm , b=2cm, [mm] \beta [/mm] = 30°

Rechenweg:

[mm] sin\beta=\bruch{a}{AB} [/mm] ; AB= [mm] \bruch{a}{sin\beta} [/mm] => AB=10cm

Lösung mit Pythagoras: CA = BA²-a²= 8,66cm

Lösung mit Pythagoras: MA = b²+BA² = 10,2cm

Berechnung von [mm] \varepsilon [/mm] => tan [mm] \varepsilon [/mm] = [mm] \bruch{b}{AB} [/mm] = 11,3°

[mm] \beta [/mm] + [mm] \varepsilon [/mm] = 41,3°

sin [mm] \beta [/mm] + [mm] \varepsilon= \bruch{MH}{MA}; [/mm] MH= (sin [mm] \beta [/mm] + [mm] \varepsilon)*MA [/mm] => 6,73cm

Das Ergebnis MH ist 6,73cm.

Ist dies korrekt?


Ich habe diese Frage in keinem anderen Forum gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Trigon. Dreiecksberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Mo 23.02.2009
Autor: M.Rex

Hallo

> In der Figur (siehe Bild) seien a, b und [mm]\beta[/mm] gegeben.
> Berechne Strecke MH. Notiere dazu Schritt für Schritt das
> verwendete Dreieck und die verwendete Winkelfunktionen.
>  
> [Dateianhang nicht öffentlich]
>  
> Gegeben: a=5cm , b=2cm, [mm]\beta[/mm] = 30°
>  
> Rechenweg:
>  
> [mm]sin\beta=\bruch{a}{AB}[/mm] ; AB= [mm]\bruch{a}{sin\beta}[/mm] =>
> AB=10cm
>  
> Lösung mit Pythagoras: CA = BA²-a²= 8,66cm
>  
> Lösung mit Pythagoras: MA = b²+BA² = 10,2cm

Korrekt. Aber du solltest die Wurzel auch hinschreiben. Es gilt:

[mm] \overline{CA}=\red{\wurzel{BA²-a²}}\approx8,66 [/mm]

>  
> Berechnung von [mm]\varepsilon[/mm] => tan [mm]\varepsilon[/mm] =
> [mm]\bruch{b}{AB}[/mm] = 11,3°

Auch hier achte auf die Notation

Es gilt:

[mm] \tan(\varepsilon)=\bruch{b}{\overline{AB}} [/mm]
[mm] \Rightarrow \varepsilon=... [/mm]

Der Tangens hat keine Einheit, wie
[mm] \tan(\varepsilon)=\bruch{b}{AB}=11,3\red{°} [/mm]
suggeriert.

>  
> [mm]\beta[/mm] + [mm]\varepsilon[/mm] = 41,3°
>  
> sin [mm]\beta[/mm] + [mm]\varepsilon= \bruch{MH}{MA};[/mm] MH= (sin [mm]\beta[/mm] +
> [mm]\varepsilon)*MA[/mm] => 6,73cm
>  
> Das Ergebnis MH ist 6,73cm.

Auch hier fehlen ein paar klammern.
[mm] \sin\red{(}\beta+\varepsilon\red{)}= \bruch{MH}{MA} [/mm]


>  
> Ist dies korrekt?
>  
>
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  

Die Werte habe ich jetzt nicht alle im TR überprüft sie sind aber plausibel (also in der passenden Grössenordung), aber die Rechenwege sind korrekt.

Marius

Bezug
        
Bezug
Trigon. Dreiecksberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mo 23.02.2009
Autor: Steffi21

Hallo, [mm] \overline{MH}=6,73cm [/mm] ist korrekt, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]