matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenTrigonalisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Trigonalisierung
Trigonalisierung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 So 17.05.2009
Autor: TommyAngelo

Hallo Leute,

ich hab folgende Aufgabe zu lösen:

[Dateianhang nicht öffentlich]

Wie soll ich auf S kommen?
Auf Wikipedia hab ich gelesen, dass ich irgendwelche Basiswechselmatrizen multiplizieren soll.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Trigonalisierung: Einstiegsidee
Status: (Antwort) fertig Status 
Datum: 19:28 So 17.05.2009
Autor: weightgainer

Hallo TommyAngelo,

du suchst eine Matrix S, so dass [mm]SAS^{-1} [/mm] eine Dreiecksmatrix ergibt. Ein möglicher Weg führt über die Eigenwerte und Eigenvektoren deiner gegebenen Matrix. Die Matrix S besteht aus den Eigenvektoren - speziellere Details kannst du bestimmt noch nachlesen (zur Kontrolle: die Eigenwerte sind 2 und 3, dabei ist 2 ein "doppelter" --> schaue nach, wie du dafür die Eigenvektoren ermittelst). Wenn du ein CAS wie Derive zur Verfügung hast, kannst du das damit zumindest schon mal antesten :-).

Gruß,
weightgainer

Bezug
                
Bezug
Trigonalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 So 17.05.2009
Autor: TommyAngelo

Jo, also die Eigenvektoren sind [mm] \vektor{1 \\ 0 \\ 0} [/mm] und [mm] \vektor{-1 \\ -1 \\ 2}. [/mm] Und was kann ich jetzt mit denen anfangen?

Also nach ein bisschen rumprobieren hab ich's dann raus:

Wir haben diese Eigenvektoren und ergänzen sie zu einer Basis von [mm] R^3. [/mm]
Da bietet sich der Vektor [mm] \vektor{0 \\ 0 \\ 1} [/mm] an. Wir schreiben diese Vektoren als Spalten in die Übergangsmatrix.

Jetzt führen wir einen Basiswechsel durch:

[mm] \pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1}^{-1}\pmat{ 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4}\pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1} [/mm]

Die Inverse der Übergangsmatrix ist sie selber, also:

[mm] \pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1}\pmat{ 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4}\pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1}=\pmat{ 2 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 4 & 2}\pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1}=\pmat{ 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2} [/mm]

Noch eine Frage: Gibt es dann unendlich viele obere Dreiecksmatrizen, die sich nur vom Eintrag oben rechts unterscheiden (oder auch Mitte rechts)?
Es hängt ja davon ab, mit welchem Vektor man ergänzt hat. Sehe ich das so richtig?

Bezug
                        
Bezug
Trigonalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Mo 18.05.2009
Autor: angela.h.b.


> Also nach ein bisschen rumprobieren hab ich's dann raus:
>  
> Wir haben diese Eigenvektoren und ergänzen sie zu einer
> Basis von [mm]R^3.[/mm]
>  Da bietet sich der Vektor [mm]\vektor{0 \\ 0 \\ 1}[/mm] an. Wir
> schreiben diese Vektoren als Spalten in die
> Übergangsmatrix.
>  
> Jetzt führen wir einen Basiswechsel durch:
>  
> [mm]\pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1}^{-1}\pmat{ 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4}\pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1}[/mm]
>  
> Die Inverse der Übergangsmatrix ist sie selber, also:
>  
> [mm]\pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1}\pmat{ 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4}\pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1}=\pmat{ 2 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 4 & 2}\pmat{ 1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1}=\pmat{ 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 2}[/mm]

Hallo,

nachgerechnet habe ich nichts, das prinzip stimmt jedenfalls.

>  
> Noch eine Frage: Gibt es dann unendlich viele obere
> Dreiecksmatrizen, die sich nur vom Eintrag oben rechts
> unterscheiden (oder auch Mitte rechts)?
>  Es hängt ja davon ab, mit welchem Vektor man ergänzt hat.
> Sehe ich das so richtig?

Ja. Das kannst Du ja auch experimentierend feststellen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]