matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Trigonometrische Gleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Trigonometrische Gleichung
Trigonometrische Gleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Fr 17.11.2006
Autor: feku

Ich bin beim bearbeiten einer Aufgabe auf die Gleichung
[mm] cos(\alpha)=0,04+0,2sin(\alpha) [/mm] gestoßen. Wie kann ich die Gleichung nach [mm] \alpha [/mm] auflösen? Ich weiß nicht, wie ich mit sinus und cosinus in einer Gleichung umgehen muss.

        
Bezug
Trigonometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Fr 17.11.2006
Autor: Leopold_Gast

Wegen der [mm]2 \pi[/mm]-Periodizität genügt es, die Lösungen im Intervall [mm]- \pi \leq \alpha \leq \pi[/mm] zu berechnen und [mm]2 \pi[/mm]-periodisch fortzusetzen.

Für [mm]0 \leq \alpha \leq \pi[/mm] kannst du [mm]\sin{\alpha} = \sqrt{1 - \cos^2{\alpha}}[/mm] schreiben, und für [mm]- \pi \leq \alpha \leq 0[/mm] gilt: [mm]\sin{\alpha} = - \sqrt{1 - \cos^2{\alpha}}[/mm]

Wenn du dann [mm]t = \cos{\alpha}[/mm] substituierst, bekommst du eine Wurzelgleichung in [mm]t[/mm]. Diese löst man durch Isolieren der Wurzel und quadrieren. Du mußt wegen der Definition von [mm]t[/mm] dabei nur Lösungen suchen mit [mm]-1 \leq t \leq 1[/mm]. Beachte, daß das Quadrieren einer Gleichung keine Äquivalenzumformung ist. Die scheinbaren [mm]t[/mm]-Lösungen müssen also an der originalen Wurzelgleichung auf Korrektheit überprüft werden. Und aus den korrekten [mm]t[/mm]-Lösungen bekommst du dann die zugehörigen [mm]\alpha[/mm]-Lösungen. Auch hier muß man aufpassen: Neben der Taschenrechnerlösung [mm]\alpha_{\text{TR}}[/mm] ist auch [mm]- \alpha_{\text{TR}}[/mm] eine Cosinuslösung.

Bezug
                
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 Sa 18.11.2006
Autor: feku

Vielen Dank für die Hilfe! Genau das [mm]\sin{\alpha} = \sqrt{1 - \cos^2{\alpha}}[/mm] hat mir gefehlt...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]